Proof That
Unique Edge Weights
Yield a Unique
Minimum Spanning Tree

by

Peter M. Maurer
Theorem. If $G=(V,E)$ is a graph with unique edge weights, and if G has two different spanning trees $S=(V,E_S)$ and $T=(V,E_T)$, then there is a third spanning tree T' (possibly equal to S or T) such that either $W(T') < W(S)$ or $W(T') < W(T)$.

Proof. Let $G=(V,E)$ be a graph with unique edge weights. Suppose $S=(V,E_S)$ and $T=(V,E_T)$ are two distinct spanning trees for G. Let $U_S=E_S-E_T$, and $U_T=E_T-E_S$. Since S and T are different, $E_S \neq E_T$. Since $|E_S|=|E_T|$, $U_S \neq \emptyset$, and $U_T \neq \emptyset$. Since G has unique edge weights, there is an edge $e \in U_S \cup U_T$ of maximum weight. Without loss of generality, assume that $e \in U_T$. Let $T_x=(V,E_T-e)$. T_x has two connected components C_1 and C_2. Since S is connected, S must contain an edge from a vertex u in C_1 to a vertex v in C_2. Furthermore, (u,v) must be an element of U_S, otherwise T would contain a cycle. Since (u,v) is an element of U_S, the weight of (u,v) must be less than the weight of e. Let $T'=(V,E_T-e \cup \{(u,v)\})$. T' is a spanning tree of G, and $W(T') = W(T)-W(e)+W((u,v)) < W(T)$.

Corollary 1. If $G=(V,E)$ has unique edge weights, and G has two different spanning trees $S=(V,E_S)$ and $T=(V,E_T)$, and $W(S)=W(T)$ then there is a third spanning tree T' of G not equal to either S or T such that $W(T') < W(T)$.

Proof: By the main theorem, T' must exist and have a weight strictly smaller than one of S and T. Since S and T are of the same weight, the weight of T' must be less than both. Since the weight of T' is less than the weight of S or T, T' cannot be equal to S or T.

Corollary 2. If $G=(V,E)$ has unique edge weights then G has a unique minimum spanning tree.

Proof. If there were two minimum spanning trees S and T, and S and T were different, then by corollary 1 there must be a third minimum spanning tree T' whose total weight is less than that of S or T. Since the weight of S and T is minimal, this is impossible, therefore the minimum spanning tree of G must be unique.