
http://www.csee.usf.edu/~maurer
http://www.csee.usf.edu/~maurer/dgl.html

THE DESIGN AND IMPLEMENTATION OF A
GRAMMAR-BASED DATA GENERATOR

Peter M. Maurer
Department of Computer Science and Engineering

University of South Florida
Tampa, FL 33620

SUMMARY

DGL is a context-free grammar based language for generating test data. Although

many of the features of DGL are implemented in a straightforward way, the implementation

of several of the most important features is neither trivial nor obvious. Before one can

understand the implementation of these features, however, it is necessary to understand the

overall structure of the compiler and its output, which was designed to be flexible enough

to incorporate new features easily. Variables and chains are two of the most important

features of DGL, and also two of the trickiest features to implement. The run-time

dictionaries, which are built into the C code generated by the compiler, are implemented as

pure code rather than as table-lookup routines. The compiler itself is reasonably

straightforward, except for the expansion of character sets and compile-time macros.

These two features can cause the "multi-dimensional" expansion of a string, the

implementation of which must be carefully designed.

Key Words: Testing, Compilers, Context-Free Grammars

http://www.csee.usf.edu/~maurer/dgl.html
http://www.csee.usf.edu/~maurer

THE DESIGN AND IMPLEMENTATION OF A
GRAMMAR-BASED DATA GENERATOR*

Peter M. Maurer
Department of Computer Science and Engineering

University of South Florida
Tampa, FL 33620

1. Introduction

DGL (Data Generation Language) is a language for automatically generating test

data1,2,3. DGL is based on the concept of probabilistic context free grammars4, and allows

data to be generated either systematically or randomly, or some combination of the two.

The purpose of this paper is to describe the implementation of the DGL compiler and the

generated code. As in any complex program, some parts of the DGL system are

straightforward, while other parts are quite complex, and not at all obvious. Rather than

trying to explain every detail of the the DGL system, this paper will concentrate on those

aspects of the generated code and the compiler that represented especially difficult design

problems. Armed with this knowledge, the rest of the DGL implementation should be

obvious to the reader.

For an extensive description of the syntax and use of DGL specifications, the reader

should consult reference number 1. However, to make this paper self contained, it is

necessary to explain some of the details of DGL syntax and usage.

The fundamental component of a DGL test specification is the production which has the

following form.

name: choice_1,choice_2, ..., choice_n;

Each of the choices is a string of characters, possibly constructed out of several

components, which can contain both terminal symbols and non-terminals. A non-terminal

is a string of the form %{name}, and a terminal symbol is anything else. There are several

syntactic shortcuts that can be used to specify choices. First, excessively long strings can

be broken at any point and specified on separate lines. This is a special case of the rule that

* This work was supported by the University of South Florida Center for Microelectronics Research

(CMR).

2

two strings with no intervening comma are concatenated into a single string. The DGL

compiler ignores spaces, tabs and newlines, except as separators between syntactic items.

As a warning to future language designers, this rule has caused no end of headaches, since

a missing comma between two choices is not considered to be a syntactic error, but

produces something quite undesired by the programmer. It would have been better to have

required that a specific concatenation operator be specified.

Most strings may be specified with or without quotes. The only exception is when

certain special characters appear in the string, in which case the string must be quoted.

Quoting removes the meaning from most special characters, except the "%" of the non-

terminal. To remove the meaning from this character it is necessary to specify two

consecutive "%" characters. This has also proved to be a point of great confusion to DGL

users, but one that is not so easily rectified. The difficulty lies in the fact that non-terminals

are identified interpretively at run time rather than at compile time. Furthermore, a DGL

grammar may deliberately build a non-terminal out of individual characters, store it in a

variable, and then reference the variable, which will cause the non-terminal to be

recognized as such and processed accordingly. For this reason it was necessary to have a

simple rule for removing the meaning from "%" that could be applied at run time without

resorting to the complex syntactic rules used by a compiler.

As a consequence of these rules, the following four specifications mean exactly the

same thing.

"abc%{def}ghi"
"abc" "%{def}" "ghi"
abc %{def}ghi
a b c % { d e "f}" g hi

It is also possible to include a set of characters in a string specification as in [0-9] or

[abc]. When such a specification appears unquoted in a string, it causes the rest of the

string to be copied several times, once for each element of the set, and successive elements

of the set to be inserted into the string in place of the character-set specification. For

example, the following two specifications are identical.

abc[def]
abcd,abce,abcf

The dash is used to specify a range of characters. The specification [0-9] is identical to

[0123456789]. Ranges are interpreted in the underlying character set of the machine on

which DGL is running, so different machines can give different results.

3

Macros are the string equivalent of a character set. One declares a macro by inserting

the keyword "macro" into an ordinary production. A macro reference has the form !name.

A macro reference is treated similarly to a character set, except in this case the choices from

the referenced macro are used to replace the macro reference in the successively created

strings. The following two specifications are identical.

abc: macro a1,b2,c3
def: xyz !abc;

def xyza1,xyzb2,xyxc3;

Macros must be defined before they are used. This rule was added to permit DGL to be

compiled with a single-pass compiler, and to eliminate the need for circularity checks in

macro references. (Macro references can be resolved as they are encountered, so as far as

the compiler is concerned, nested macro calls do not exist.) Current DGL implementations

allow any ordinary production to be used as a macro whether or not it was declared as

such. The macro declaration is used only to suppress generation of selection code for the

macro. This decision may be changed in future DGL implementations, because the right-

hand sides of all ordinary productions must be saved in case the production is used as a

macro later.

The primary problem with macros and character sets is that a single choice can have

several macro references or character sets, requiring the sort of multi-dimensional

expansion illustrated by the following two identical productions. Section 6 explains how

this multi-dimensional expansion is accomplished.

abc: [xy][xy];

abc: xx,xy,yx,yy;

In addition to ordinary productions, DGL provides several other types of productions

which alter the rules by which choices are made from the alternatives on the right-hand side

of the production. For ordinary productions, a random choice is made from the right-hand

side. Other productions allow some choices to be selected with higher probability than

others, as in the following example.

abc: 1:a,2:b,1:c;

4

This production will cause b to be selected twice as often as a, or c, on the average.

The alternatives of the following production will be chosen sequentially in the order

specified, rather than at random.

abc: sequence a,b,c,d,e;

One particularly useful type of production is the variable, which is declared as follows.

var1: variable "This is the initial value";

A variable acts as if it were an ordinary production with a single alternative, except that

the content of the alternative may be changed dynamically using non-terminals of the form

%{abc.var1}. Non-terminals of this form consist of two production names separated by a

period. The second production must be a variable, but there are no restrictions on the type

of the first. This non-terminal produces no output, but causes the value selected from

"abc" to be assigned to "var1." When the non-terminal %{var1} is specified, the current

contents of var1 are inserted into the output at that point. If var1 contains non-terminals,

they will be expanded appropriately. The following illustrates how to insert non-terminals

into a variable.

main: xyx%{abc.var1}qed%{var1};
abc: %%{z};
z: zzzzz;
var1: variable;

The non-terminal %{main} is the start symbol for this grammar. Interpreting %{main}

will produce the output "xyxqedzzzzz". The main problems with variables is that the

output of any production can be redirected into a variable, and that assignments can be

nested. The solutions to these problems are discussed in Sections 2 and 4, primarily in 4.

DGL provides many productions similar to the "sequence" production illustrated above

which allow data to be generated systematically. By far the most complex production for

systematic data generation is the chain production, because it requires that selections from

several different productions be coordinated, and there are very few limitations on how

these productions can be used. Any finite set of strings can be generated systematically by

writing a grammar for it , and inserting the "chain" keyword into each of the productions.

The only restriction is that one can use only ordinary productions, otherwise the structure

of the grammar is quite unrestricted. For example, suppose it is necessary to generate all

strings that consist of three alphabetic characters followed by four digits. (This is a large

5

set containing 175,760,000 members.) The following grammar can be used to generate

this set.

main: chain %3{a}%4{n};
a: chain [a-z];
n: chain [0-9];

In this example, the production %3{a} is equivalent to %{a}%{a}%{a}. This example

requires selections to be coordinated between the three productions. It is also possible to

mix chain productions with other types of productions in a reasonably unrestricted way.

Suppose that in the above example, it was desired to generate all alphabetic combinations

systematically, but choose the four-digit number at random. This can be accomplished by

removing the chain keyword from the n production. Section 3 discusses the problems of

implementing chains.

For most types of productions, the actions that must be taken when expanding a non-

terminal are obvious, and in many cases quite trivial. However, deciding when to perform

these actions and determining where to put the output is more difficult. Section 2 deals

with these issues. It is important to realize that the DGL compiler converts a DGL grammar

into a C program. When compiled, this C program constitutes the data generator that was

described by the grammar. Section 2 gives an overall plan for the generated code, and

discusses decisions that were made in designing the generated code.

Certain parts of the generated code are required to perform dictionary lookups for

symbols encountered during run-time processing. Section 5 describes how a "pure code"

dictionary is implemented to perform these operations. The final section of the paper,

Section 7, draws conclusions.

2. The General Structure of the Generated Code.

The right-hand side of an ordinary production consists of a number of strings, each of

which may contain a number of terminals and non-terminals. A typical string might be

"Cde%{xyz}123%{iy}%d", where %{xyz}, %{iy}, and %d represent non-terminals; and

Cde and 123 represent terminals. Since the right-hand sides of ordinary productions are

known at compile time, it would certainly be possible to interpret them there rather than at

run time. However, when the DGL compiler was first designed, it was anticipated that

"production-like" strings could be created dynamically either by external subroutines or by

new types of productions that did not at that time exist. Because a run-time interpreter

would be required anyway for such strings, it was decided, for simplicity, to interpret all

strings at run-time rather than compile time. Interpreting a string consists of making a left-

6

to-right scan of the chosen string, outputting or storing all terminal symbols and replacing

all non-terminals with choices from the referenced productions. The algorithm illustrated in

Figure 1 is a simplified version of that used by all DGL data generators.

interpret(string)
begin

/* Process string from left to right*/
while There are characters left to process do

if There is no unprocessed non-terminal
output all unprocessed characters;

else
output all unprocessed characters up to the next non-terminal;
NTNAME := the name of the next non-terminal;
if NTNAME contains a period then

Move the variable name from NTNAME to VARNAME;
else

VARNAME := the empty string;
endif
if VARNAME ≠ the empty string then

Assign a selection from the non terminal named in NTNAME
to the variable named in VARNAME;

else
Make a selection from the non terminal named in NTNAME;

endif
endif

endwhile
end

Figure 1. The interpreter algorithm.

This algorithm omits the details of processing truncated non-terminals such as "%{abc"

or "%{.xyz}", and of non-terminals with repetition counts such as "%5{abc}" and

%3-7{xyz}. Furthermore, error processing for undefined productions and variables is also

omitted. The run-time interpreter contains more than one hundred lines of code, and is

therefore too complicated to be replicated for each production. Therefore it is implemented

as a subroutine which is called by the production handling code.

The next problem was determining the relationship between the run-time interpreter and

production-handling code. One alternative would have been to integrate the production

handlers into the interpreter itself. However, when the interpreter was first designed, it

was anticipated that it might be necessary to add many new types of productions. (This

later turned out to be the case.) It would be necessary to integrate the code for these new

productions into the existing compiler without affecting the code generation for existing

productions. As a mechanism for isolating the code for different types of productions, the

decision was made to incorporate all code for a particular production into one or more

7

subroutines that were specific to that particular production. Every production would have a

selection routine which would be called to make a selection from its right-hand-side.

Variables would have assignment routines in addition to their selection routines. The

interpreter would have no knowledge of production types, and would treat every

production identically. This scheme allowed all the peculiarities specific to a particular type

of production to be isolated from all other code. Furthermore, because C subroutines may

be used recursively, implementing each production as a subroutine allowed the structure of

the code generator to mirror the natural recursive structure of a context-free grammar.

Figure 2 gives an example of a selection routine for an ordinary production. Variable

assignment routines are discussed in greater detail in Section 4.

abc: qed,abc%{def}hij,13245;

Declare abc_value to be an array containing the
three strings "qed", "abc%{def}hij", and "13245".

subroutine abc_select;
begin

i := A Random Number from 1 to 3;
Interpret(abc_values[i]);

end

Figure 2. A simple selection routine.

The problem of distinguishing between declared and undeclared productions and

variable names, was solved by providing two look-up routines, similar to the hash-table

lookup routines used in most compilers. (See Section 5.) If a production has been

declared, the lookup routine will return the address of the production's selection routine,

otherwise it will return NULL. These lookup routines were implemented as two separate

dynamically generated subroutines so that the run-time interpreter could be implemented as

a precompiled library routine. (The current DGL implementation, however, still generates

this routine dynamically.)

The final problem was that of redirecting output. Potentially, the output of any

production can be redirected into a variable. Although the interpreter subroutine performs

all output for most productions, there are some types of productions (such as counters) that

perform output in their selection routines. Since output can be performed in many different

places, and since redirecting output is somewhat messy, it was desirable to isolate the

redirection of output into a single subroutine rather than distribute it throughout the

generated code. For this reason a basic output routine was developed which replaced the C

"putc" routine. This routine, which is ultimately responsible for performing all output, can

8

be switched back and forth between the standard output and an internal storage area by

altering the contents of a global variable. Several higher-level output routines were

designed around this low-level routine, in much the same way that higher-level C output

routines were developed around "putc"5. The overall structure of a DGL data generator is

illustrated in Figure 3. As this figure illustrates, data is generated by making one or more

calls to the production handler of the grammar's start symbol.

INTERPRETER

Production
Handler

Production
Handler

Production
Handler

Production
Handler

Output
Routine

Main
Routine

Figure 3. The structure of a code generator.

In addition to the selection routine, each production has a collection of C variables

which contain the value(s) of the right-hand side of the production as well as the current

state, if applicable. To illustrate this further, Figure 4 illustrates the code generated for a

sequence production which has an internal state. To simplify the implementation of state

variables, all internal states were designed to be represented either as single integers or as

pointers to data-structures. When the state is represented as a pointer to a data structure, it

is normally necessary to make a copy of the data structure when saving the state of the

production.

9

abc: sequence qed,abc%{def}hij,13245;

Declare abc_value to be an array containing the
three strings "qed", "abc%{def}hij", and "13245".

Declare abc_state and initialize it to 1.

subroutine abc_select;
begin

i := abc_state;
abc_state := abc_state + 1;
if abc_state > 3 then

abc_state := 1;
endif
Interpret(abc_values[i]);

end

Figure 4. A simple selection routine.

3. The Implementation of Chains.

From the beginning it was clear that DGL needed a mechanism for exhaustive

generation of certain sets of data, although it was not clear exactly what this mechanism

should be. It was clear that for anything other than trivial sets of data, that some

coordination of selections from various different productions would be necessary. One

early approach was to replace the interpreter described in Section 2 with an interpreter that

coordinated selections from several different productions. However most practical

applications of exhaustive test generation required a mixture of exhaustive techniques and

random selection. For example, it might be necessary to generate HLL compiler tests of

the form X:=Y+Z, where X Y and Z range over all data types, with the values of Y and Z

generated randomly. Because of this mix, it was usually necessary to manually customize

the interpreter for a specific application.

Another early approach was to provide a coordinating production in which the right-

hand-sides of certain subordinate productions were also specified. The selection routine

for this production could then coordinate the selections from each of the subordinate

productions. This approach was more general purpose than customized interpreters, but

severely limited the types of grammatical structures that could be used to describe

exhaustively generated tests.

In a sense, both of these early approaches violated the original spirit of the DGL

implementation, namely that all code specific to a particular production should be isolated

inside that production's selection routine. Although it seems difficult to reconcile this spirit

with the need to coordinate selections from several different productions, the chain

10

construct was the final result of doing just that. Surprisingly, the chain construct also

turned out to be both very powerful and remarkably easy to use.

Syntactically, the chain production is simply an ordinary production containing the

"chain" keyword. The implementation of chains is based on the data structure illustrated in

Figure 5. This data structure, which is created dynamically, represents the current state of

one production in a coordinated set of chain productions. The "current" field contains the

number of the next alternative to be chosen, and the "limit" field contains the total number

of alternatives for the production. The data structure contains two pointers called "right"

and "down" respectively. The "down" pointer points to the data structure for the leftmost

non-terminal of the current alternative. The "right" pointer is used to create a linked list of

data-structures for non-terminals that appear in the same alternative.

current limit

Figure 5. A Data Structure Element for Implementing Chains.

To clarify the use of the chain data-structure, consider the grammar illustrated in Figure

6.a which generates all three-letter strings containing the letters a, b, c, and d. The first

string generated by this grammar is "aaa", which is produced by the data structure

illustrated in Figure 6.b. The string "dac" is produced by the data structure illustrated in

Figure 6.c. Note that production alternatives are numbered from left to right starting with

zero.

11

exam: chain %{let}%{let}%{let}\n;
let: chain a,b,c,d;

a. A sample chain grammar.

1

4 440 00

0

b. The Data Structure for generating "aaa".

1

44

0

043 2

c. The Data Structure for generating "dac".

Figure 6. The use of the chain data structure.

The chain data structure is used to create a standard binary-tree representation of the

derivation tree of a string. This tree is considered to be the current state of the production

that appears at the root of the tree, and only chain productions are represented in the tree.

Creation of the derivation tree is done by the selection routines using two global variables

named "parent" and "left." When a chain selection routine is called, "parent" will point to

the parent of the current production, and "left" point to the production to the left of the

current production on the same level of the tree. When "parent" is NULL, the selection

routine will either begin building a new derivation tree, or obtain an old derivation tree from

the state variable of the current production. If "left" is NULL, the data structure for the

current production is pointed to by the "down" pointer of "parent," otherwise it is pointed

to by the "right" pointer of "left." When a new derivation tree is being created, the field

pointing to the structure for the current production will be NULL. When this occurs, a

new data-structure is allocated and chained into either "left" or "parent" as appropriate.

12

When a new data structure is created, the "current" field will be set to zero, and the "right"

and "down" fields will be initialized to NULL. Figure 7 illustrates the construction of the

tree illustrated in Figure 6.b.

Beginning of First Call to "exam_select"
Parent: NULL Left: NULL exam_state: NULL

10

Beginning of First Call to "let_select"
Parent: Left: NULL exam_state:

1

40

0

Beginning of Second Call to "let_select"
Parent: Left: exam_state:

1

4 400

0

Beginning of Third Call to "let_select"
Parent: Left: exam_state:

Figure 7. The creation of a chain derivation tree.

Once the selection routine has obtained (or created) its own data structure, it uses the

"current" field to select an alternative, and passes the corresponding string to the

interpreter. Before calling the interpreter, it saves the current value of "parent," assigns

NULL to "left," and makes "parent" point to its own data structure. When the interpreter

13

returns, the selection routine restores the value of "parent," makes "left" point to its own

data structure, and then returns to its caller (normally the interpreter). The chain selection

routine is illustrated in Figure 8.

abc_select()
begin

local_parent:chain_structure;
current_node:chain_structure;

if parent = NULL
then

current_node := abc_state;
if current_node = NULL then

current_node := new_node(0,production.alternative_count)
abc_state := current_node;

endif
else-if left = NULL then

current_node := parent↑.down;
if current_node = NULL then

current_node := new_node(0,production.alternative_count);
parent↑.down := current_node

endif
else

current_node = left↑.right;
if current_node = NULL then

current_node := new_node(0,production.alternative_count);
left↑.right := current_node

endif
endif;
current_alternative := abc_values[current_node↑.current];
local_parent := parent;
left := NULL;
parent := current_node;
interpret(current_alternative);
left := current_node;
parent := local_parent;
if parent = NULL then

left := NULL;
if NOT advance(current_node) then

production.state := NULL
endif

endif
end

Figure 8. The Selection Routine Algorithm for Chains.

If the restored value of "parent" is null, then this is the root of the derivation tree, and it

is necessary to "advance" the derivation tree to generate the next string. This is done by

14

calling the special "advance" routine pictured in Figure 9. The strategy used by the

advance routine, is to first attempt to advance the production immediately to the right, if that

fails then try to advance the production immediately below, and if that fails then try to

advance the current production. An attempt to advance a NULL pointer always fails.

When an attempt to advance either the right or down pointer fails, the corresponding data

structure is destroyed and the pointer is assigned the NULL value. The current structure

can be advanced only when both "left" and "down" are NULL. The destruction of the

down pointer is necessary on failure because a new alternative will be chosen for the

current production, and the structure of the new and old alternatives may not be identical.

Destruction of the right pointer is not strictly necessary, but is done for the sake of

uniformity in the algorithm. When the advance fails at the head of the chain, all

possibilities have been exhausted, and several user selectable actions may be taken.

advance(current_node:chain_structure):boolean;
begin

if current_node = NULL then return FALSE endif;
if advance(current_node↑.right) then return true

else current_node↑.right := NULL endif;
if advance(current_node.down) then return true
else current_node.down := NULL endif;
current_node.current := current_node.current + 1;
if current_node.current ≥ current_node.limit
then

current_node.current := 0;
return false

endif;
return true

end

Figure 9. The Advance Algorithm for Chains.

Because all processing of the chain data structure (except advancing) is incorporated

into the selection routines, chain productions may be freely mixed with other types of

productions. When chain productions are used, it will usually be the case that the number

of different strings generated by the grammar is finite. However, with a properly

constructed grammar, it is possible to enumerate the first n strings of an infinite set. For

example, the following grammar enumerates the regular set {a,b}*.

string: chain %{letter},%{string}%{letter};
letter: chain a,b;

15

In the second alternative of the "string" production, the order of the non-terminals is

important, since the rightmost non-terminal will be varied the fastest. If the order of these

non-terminals were reversed, the grammar would generate only the following strings "a",

"b", "aa", "ab", "aaa", "aab", "aaaa", "aaab", and so forth.

Chains do have drawbacks, one of which is that a chain cannot be referenced inside

another chain. For example, suppose it is necessary to generate tests systematically using a

set of chain productions, and it is necessary to number each test with a 4-digit hexadecimal

number using the production "hexnum" as illustrated below.

test: chain %{hexnum} ... ;

hexnum: chain %4{hexdigit};
hexdigit: chain [0-9],[a-f];

If this grammar is used without alteration, first every test will be generated and

numbered zero, then every test will be generated and numbered one, and so forth. This is

clearly not what is intended. The "head" production was introduced to solve this problem.

The "head" production is a special type of "chain" production that always acts as if it were

the root of the derivation tree. Because of this, an independent derivation tree is created for

all "head" productions. Before "head" productions were introduced, it was possible to

solve this problem by using variables. First, the production "hexnum" would be assigned

to a variable, and then the value of the variable would be used to create the test as illustrated

below.

test2: %{hexnum.hexvar}%{test};
test: chain %{hexvar} ... ;

A second drawback of chains is that each successive string is generated by repeating a

sequence of choices. The derivation tree will force the choices for "chain" productions to

be identical, but if part of the derivation tree was created based on a random selection from

a non-chain production, there is no guarantee that an identical choice will be made for

successive strings. For example, consider the following grammar.

hexnum: chain %{hexnum2};
hexnum2: %{hexdigit},%{hexnum2}%{hexdigit};
hexdigit: chain [0-9],[a-f];

The first time that "hexnum" is interpreted, production "hexnum2" will make a random

number of choices from "hexdigit." The second time that "hexnum" is interpreted a

different number of choices from hexnum2 will probably be made. However, the intent is

(apparently) to make a random number of choices from hexnum2, and then exhaust all of

16

the strings that can be made from that number of choices. Fortunately, the practical

applications of this sort of grammar are rare, but it is still possible (although not easy) to

program around the problem.

4. The implementation of variables.

When the interpreter encounters a non-terminal of the form %{xyz.abc}, it will call the

assignment routine for the variable "abc" rather than the selection routine for "xyz". The

assignment routine for a variable has one parameter, which is the name of the production

from which the new value of the variable is to be chosen. The structure of a variable

assignment routine is illustrated in Figure 10.

abc_assign(NonTerminalName)
begin

Save the current output status;
Redirect output into a temporary storage area;
Call the selection routine for NonTerminalName;
Delete the current contents of abc, if any;
Create a string from the data in temporary storage;
Assign the newly created string to abc_state;
Restore the current output status;

end

Figure 10. A variable assignment routine.

In addition to its assignment routine, every variable also has a selection routine, which

is illustrated in Figure 11.

Declare abc_state to be a pointer
to a dynamically allocated string;

abc_select()
begin

 interpret(abc_state);
end

Figure 11. A variable selection routine.

There are two problems that can occur in connection with variable assignments. First,

the value assigned to a variable can be quite large. In general, the size of a selection from a

non-terminal is both unlimited and unpredictable. Second, variable assignments can be

nested, as in the following example.

17

abc: qed%{s1.v1}the;
s1: grx%{s2.v2}eno;

To solve these problems, the temporary storage area for accumulating variable values is

implemented as a collection of dynamic data structures, as illustrated in Figure 12.

Next
Horizontal

Next
Vertical

Last
Block

Current
Size DATA

a. A single storage element.

Current

b. A dynamic storage structure.

Figure 12. The dynamic storage area for variable values.

Figure 12.a illustrates a single storage element which is used to hold data for variable

values. Each element holds a fixed number of characters. (In the current implementation,

this number is equal to 100.) Initially, a single block is allocated, but if the number of

characters exceeds the limit, an additional block will be allocated and linked to the first

using the "Next Horizontal" field. Additional blocks can be added, creating a singly linked

list as illustrated in Figure 12.b. A global pointer, "current," points to the head of the list.

The field "Last Block" points to the most recently allocated block, which is the block to

which the next character will be added. This creates a horizontal list, such as those

illustrated in Figure 12.b.

18

The vertical structure illustrated in Figure 12.b is created by nested variable

assignments. When a new variable assignment is begun, a new block will be allocated and

pushed onto the stack which is implemented using the global pointer "current" and the

"Next Vertical" field of the first block in each horizontal list. When a variable assignment

terminates, the top horizontal list in the stack is popped off, the number of characters in the

list is counted, a string is allocated to hold the data, all data is transferred from the

horizontal list into the string, and the data structures of the horizontal list are deallocated.

This method of handling variable assignments allows nested assignments to work properly

even, in some cases, when the nested assignments are to the same variable. Because the

old value of the variable is not destroyed until the last possible moment, operations such as

concatenating characters to the end of a variable will work properly.

5. The Run-Time Dictionaries.

The interpreter uses two run-time dictionaries, one for selection routines and one for

variable assignment routines. The lookup of a particular entry is done by a series of binary

searches which are completely unrolled. The first binary search is done on the length of the

input string. The subsequent searches (if any) are done on successive characters of the

input string. Conceptually, the dictionary is organized as a hierarchical collection of

sublists. First, the collection of all entries is broken into sets of strings such that all strings

in a particular set have the same number of characters. Each set of strings is further broken

down into subsets such that the strings in each subset all begin with the same letter. Each

subset is broken down further using the second character of each string, and so forth. This

break-down continues until, at the lowest level, each subset contains a single string.

Successive binary searches are used to successively select sublists until only a single string

remains. Then the right-hand portion of the string that was not used for selection is

compared to the corresponding right-hand portion of the selected entry. Like the binary

searches, this final comparison is also completely unrolled.

Because the binary searches and final comparisons are completely unrolled, no data

structures are required for storing the dictionary entries. The lookup routine consists of a

collection of nested "if" statements. To clarify the structure of the lookup routine, suppose

that a grammar contains production names with lengths 3, 5, 9 and 12. The binary search

on string length is illustrated in Figure 13.

19

if input_length > 5 then
if input_length > 9 then

if input_length ≠ 12 then return NULL;
else search strings of length 12; endif

else
if input_length ≠ 9 then return NULL;
else search strings of length 9; endif

endif
else

if input_length > 3 then
if input_length ≠ 5 then return NULL;
else search strings of length 5; endif

else
if input_length ≠ 3 then return NULL;
else search strings of length 3; endif

endif
endif

Figure 13. An Unrolled Binary Search on String Length.

To illustrate the subsequent searches, assume that the strings of length 5 are ggccc,

gmddd, mgeee, and mmfff. The code to search these strings is illustrated in Figure 14. In

Figure 14, it is assumed that the input string is stored in an array named I whose lowest

index is zero.

20

if I[0] > "g" then
if I[0] ≠ "m" then return NULL;
else

if I[1] > "g" then
if I[1] ≠ "m" then return NULL;
else

if I[2]="f" and I[3]="f" and I[4]="f" then return mmfff_select;
else return NULL; endif

endif
else

if I[1] ≠ "g" then return NULL;
else

if I[2]="e" and I[3]="e" and I[4]="e" then return mgeee_select;
else return NULL; endif

endif
endif

endif
else

if I[0] ≠ "g" then return NULL;
else

if I[1] > "g" then
if I[1] ≠ "m" then return NULL;
else

if I[2]="d" and I[3]="d" and I[4]="d" then return gmddd_select;
else return NULL; endif

endif
else

if I[1] ≠ "g" then return NULL;
else

if I[2]="c" and I[3]="c" and I[4]="c" then return ggccc_select;
else return NULL; endif

endif
endif

endif
endif

Figure 14. Searching a set of four strings.

Although Figures 13 and 14 illustrate the unrolled loops as nested "if" statements, it

was necessary to implement them using labels and go-to statements, because our version of

the C compiler was incapable of handling such deeply nested control statements.

The unrolled search routines have recently replaced linear search routines for the

selection and assignment routines. The use of these routines has made the larger code

generators run noticeably faster. In the near future we plan to implement similar routines

for state variables and for restoring the state of productions from an external file.

21

6. The Structure of the Compiler.

For the most part, the DGL compiler is a straightforward parser implemented using the

YACC preprocessor6. As soon as a production is parsed, code is generated for it. Two

temporary files are used to hold the generated code, one for declarations of global

variables, and one for selection and assignment routines. If the production is an ordinary

production or a macro, its right-hand side is saved for referencing by subsequent

productions. Otherwise, all compiler data structures for the production are destroyed once

code has been generated.

Most productions contain a list of strings as part of their right-hand side, the general

syntax of which is given in Figure 15. As this figure illustrates, a string can be created by

concatenating a sequence of simple strings, macro references and character sets. Before

code can be generated for a production, it is necessary to convert strings containing

character sets and macro references into sets of simple strings. The first step is to convert

the string specifications into binary trees whose vertices represent concatenation operations

and whose leaves represent strings, macro references, and character sets. Figure 16 shows

the structure of such a tree. In this figure S represents a string, R represents a macro

reference, and C represents a character set. A similar binary tree is used to represent a

character set, but in this case the vertices of the tree represent the dashes that appeared in

the original character-set specification.

22

comma comma

string_list

c_string c_string c_string

b_string b_string b_string

macro refstring

d_string
open-bracket close-bracket

string string string

dash dash

Figure 15. The grammatical structure of the RHS of a production.

23

S

R

C S

SS

S

Figure 16. The Structure of a Parsed String.

The processing for character sets and macro references is quite similar. The macro

reference causes a list of strings to be fetched from the compile-time dictionary, while the

character set causes a list of one-character strings to be generated from the specification.

The string-creation algorithm transforms trees such as that pictured in Figure 15 into lists of

strings by traversing the binary tree and gathering data into a fixed size accumulation area.

Macro references and character sets are handled via back-tracking. To facilitate this, the

string-creation routine is implemented as a recursive procedure with two arguments: a tree-

vertex and the current offset into the accumulation area. The initial call to this routine is

done using the root of the tree structure and an offset of zero.

When the string-creation routine processes a non-leaf vertex, it processes the left child

(which is always a leaf) and calls itself recursively on the right child. If the left child is a

string, it is copied into the accumulation area starting at the current offset. The offset for

the recursive call is equal to the current offset plus the length of the left-hand side. When a

character set or macro is processed, each string in the list is copied successively into the

accumulation area starting at the current offset. (The current offset does not change from

one string to the next.) A recursive call to the right child is done for each string.

The processing for leaves is identical to that for non-leaf vertices, except that no

recursive call is made. Instead, the routine adds the contents of the accumulation to the

current list of strings.

24

The main limitation of this technique is that the size of the accumulation area is fixed at

5000 characters, although in practice it is unlikely that this limit would be exceeded.

7. Conclusion

Although DGL has become extremely complex, (this paper has touched on only a few

of the many different types of DGL productions), in a sense, it is still in its infancy. There

are certainly many new types of productions that could be added. For example, it might be

useful to have productions that were capable of performing arithmetic. DGL has already

proven to be useful in generating tests for VLSI designs7, and may prove to be equally

useful in generating tests for software. Nevertheless, the experience with DGL as a

language is quite limited compared to most other programming languages. Would it be

useful to make DGL into a full-blown general-purpose programming language? The

answer to this question is not yet clear. On the other hand, it is certain that DGL will

continue to evolve as experience with the language and its implementation grows.

25

REFERENCES

1. P. M. Maurer, "Generating Test Data with Enhanced Context Free Grammars," IEEE

Software, 7:4, 50-56 (July 1990).

2. A. G. Duncan, J. S. Hutchison, "Using Attributed Grammars to Test Designs and

Implementations," Proc. 5th Int. Conf. on Software Eng., 170-178 (1981).

3. D. C. Ince, "The Automatic Generation of Test Data," Comput. J., 30, 63-69 (1987).

4. T. L. Booth, R. A. Thompson, "Applying Probability Measures to Abstract

Languages," IEEE Trans. Comput., C-22, 442-450 (1973).

5. B. W. Kernighan, P. J. Plauger, The Elements of Programming Style, McGraw-Hill,

New York, 1974.

6. S. C. Johnson, YACC: Yet Another Compiler Compiler, Computing Science

Technical Report Number 32, Bell Laboratories, Murray Hill, NJ, 07974, 1975.

7. P. M. Maurer, "The Design Verification of the WE 32100 Math Accelerator Unit,"

IEEE D&T, 5:3, 11-21 (June 1988).

26

FIGURE LEGENDS

Figure 1. The interpreter algorithm.

Figure 2. A simple selection routine.

Figure 3. The structure of a code generator.

Figure 4. A simple selection routine.

Figure 5. A Data Structure Element for Implementing Chains.

Figure 6. The use of the chain data structure.
a. A sample chain grammar.
b. The Data Structure for generating "aaa".
c. The Data Structure for generating "dac".

Figure 7. The creation of a chain derivation tree.

Figure 8. The Selection Routine Algorithm for Chains.

Figure 9. The Advance Algorithm for Chains.

Figure 10. A variable assignment routine.

Figure 11. A variable selection routine.

Figure 12. The dynamic storage area for variable values.
a. A single storage element.
b. A dynamic storage structure.

Figure 13. An Unrolled Binary Search on String Length.

Figure 14. Searching a set of four strings.

Figure 15. The grammatical structure of the RHS of a production.

Figure 16. The Structure of a Parsed String.

