
Peter M. Maurer
This document was designed for two-sided printing. Each chapter was designed to start on an odd-numbered page. Blank pages that were required to force printing to a new page have been eliminated from this version in the interest of saving space. Therefore,page numbers are not always consecutive.

http://www.csee.usf.edu/~maurer/fhdl.html
http://www.csee.usf.edu/~maurer
http://www.csee.usf.edu

Table of Contents

i

CHAPTER 1 The FHDL Gate-Description Language _______________________1

1.1 Overview__ 1

1.2 Simulating Circuits ___ 2

1.3 Creating and Using Subcircuits.___ 3

1.4 Wire Declarations. __ 4

1.5 The FHDL ROM Specification Language___________________________________ 5

1.6 The FHDL PLA Specification Language____________________________________ 6

1.7 Known Gate Types. ___ 7
1.7.1 Simple Gate Types __ 7
1.7.2 And-or-inverts and Or-and-inverts. __ 7
1.7.3 Flip Flops. ___ 8
1.7.4 Tristate Gates __ 9
1.7.5 Special Function Gates ___ 9
1.7.6 Functional blocks. ___ 9

CHAPTER 2 Algorithmic State Machines ________________________________15

2.1 ASM State Declarations __ 15

2.2 ASM Condition Declarations __ 15

2.3 ASM Conditional Output Declarations ____________________________________ 16

2.4 State Machine Examples __ 17

CHAPTER 3 The ROM Preprocessor____________________________________21

3.1 Overview___ 21

3.2 Specifying Fields. __ 22

3.3 Using Equates. __ 22

3.4 Specifying ROM words. __ 23

3.5 Required Fields ___ 24

3.6 Complex Commands ___ 25

3.7 ROM addresses. ___ 25

3.8 Adding New Opcodes___ 26

3.9 ROM Output ___ 26

3.10 ROMs With Multiple Word Formats ____________________________________ 27

3.11 Include Statements__ 29

3.12 Running the preprocessor __ 29

3.13 Using ROMs ___ 30

CHAPTER 4 The PLA Preprocessor ____________________________________31

4.1 Overview___ 31

4.2 Specifying Fields. __ 32

Table of Contents

ii

4.3 Using Equates. __ 32

4.4 Specifying the Value of AND and OR Plane Fields.__________________________ 33

4.5 Required OR Plane Fields___ 35

4.6 Complex Commands ___ 35

4.7 Complex Conditions__ 36

4.8 Limiting the Number of Wordlines _______________________________________ 36

4.9 Adding New Opcodes___ 36

4.10 The Begin and End Statements__ 37

4.11 Grouping Input and Output Fields ______________________________________ 37

4.12 Multiple OR Plane Formats __ 38

4.13 Include Statements__ 40

4.14 Running the preprocessor __ 40

4.15 Using PLAs __ 41

CHAPTER 5 The MACRO Preprocessor _________________________________43

5.1 Overview___ 43

5.2 A Simple Macro Definition __ 44

5.3 A More Complicated Example ___ 45

5.4 Accessing The Argument List__ 48

5.5 Generating Net Names__ 49

5.6 Function Calls __ 51

5.7 Generating Partial FHDL Statements _____________________________________ 52

5.8 The else-if Construct ___ 53

5.9 Accessing Attributes ___ 54

5.10 Arithmetic and Logical Expressions. _____________________________________ 54

5.11 String Handling Functions.___ 55

5.12 List Handling Features __ 56

5.13 Type Conversion Functions __ 57

5.14 Redirecting Output ___ 58

5.15 Creating Macro Libraries__ 60

5.16 Including Text ___ 60

5.17 A Word on Format__ 61

5.18 Executing the Preprocessor___ 63

5.19 Macro Statement Summary __ 65
5.19.1 Operand-Type Designators __ 65
5.19.2 Statements ___ 65

Table of Contents

iii

5.20 Macro Function and Built-in Variable Summary __________________________ 67
5.20.1 Operand-Type Designators __ 67
5.20.2 Functions and Variables __ 67

5.21 Macro Operator Summary ___ 69
5.21.1 Operand-Type Designators __ 69
5.21.2 Operands __ 69

5.22 Macro Processor Keywords __ 72

5.23 Macro Operator Precedence__ 73

CHAPTER 6 The Test Driver Language _________________________________75

6.1 Introduction __ 75

6.2 The Format of the Language __ 76

6.3 Expressions ___ 77

6.4 Statements__ 78
6.4.1 The variable statement __ 78
6.4.2 The go statement ___ 78
6.4.3 The expression statement __ 78
6.4.4 The read statements___ 79
6.4.5 The write statements __ 80
6.4.6 The monitor statements __ 80
6.4.7 The if statement__ 81
6.4.8 The while statement___ 83
6.4.9 The for statement___ 83
6.4.10 Break and continue statements ___ 84
6.4.11 The message statement ___ 84
6.4.12 The error statement __ 84
6.4.13 The clock statement__ 85
6.4.14 The count statement ___ 85
6.4.15 On conditions __ 85
6.4.16 The include statement __ 86
6.4.17 Invoking the Interactive Command Interpreter ___________________________________ 86
6.4.18 Dynamic Output Processors ___ 87
6.4.19 The quit statement ___ 87

6.5 The Interactive Command Interpreter ____________________________________ 87
6.5.1 The help command ___ 88
6.5.2 The show commands__ 88
6.5.3 Interactively specified macros___ 89
6.5.4 The remove statement ___ 90

CHAPTER 7 The Test Data Generator __________________________________91

7.1 Introduction __ 91

7.2 Productions___ 92

7.3 The Rules for Forming Strings___ 92

7.4 More Types of Productions__ 94

7.5 More on Non-Terminals __ 95

7.6 Techniques for Systematic Generation of Data _____________________________ 96

Table of Contents

iv

7.7 Running out of Choices ___ 98

7.8 Variables ___ 99

7.9 Creating a Data Generator ___ 101

7.10 Advanced Features___ 102

7.11 Action Routines ___ 104

7.12 State Variables __ 106

7.13 Data-Generation Subroutines__ 106

7.14 Experimental Features ___ 108

7.15 White Space and Comments ___ 109

7.16 Conclusion ___ 110

7.17 Dgl Keywords and Reserved Characters_________________________________ 111

CHAPTER 8 The USF WSI Floorplanner_______________________________113

8.1 Introduction ___ 113

8.2 Drawing Modes __ 114

8.3 Menu Commands___ 116
8.3.1 File Commands ___ 116
8.3.2 Edit Commands___ 117
8.3.3 The Param Menu__ 118
8.3.4 The Array Menu __ 122

8.4 The Scroll Bars___ 123

8.5 Selecting, Moving, and Resizing Objects__________________________________ 123

8.6 Conclusion __ 124

CHAPTER 9 The Wave-Form Generator________________________________125

9.1 Introduction ___ 125

9.2 Invoking The Generator ___ 125

9.3 Scrolling __ 128

9.4 The Command Bar ___ 128

9.5 The Mode Bar__ 129

9.6 Shutting Down The Display __ 129

9.7 Conclusion __ 129

CHAPTER 10 The Vector Display Program _____________________________131

10.1 Introduction __ 131

10.2 Program Options __ 132

10.3 Processing of Command Line Arguments________________________________ 133

10.4 Environment Variables ___ 134

Table of Contents

v

10.5 Examples___ 134
10.5.1 Example 1 __ 135
10.5.2 Example 2 __ 136
10.5.3 Example 3 __ 137
10.5.4 Example 4 __ 138
10.5.5 Example 5 __ 140
10.5.6 Example 6 __ 141
10.5.7 Example 7 __ 142
10.5.8 Example 8 __ 142

10.6 Conclusion ___ 144

Index___145

1

CHAPTER 1

The FHDL Gate-Description Language

1.1 Overview
The Florida Hardware Design Language (FHDL) resembles assembly language in that

each statement has a label field, an operation code, and a list of operands. The label field,
which is optional, starts at the first character of a statement and ends with a colon (:). The
operation code must always be present and must be preceded by one or more spaces or
tabs. If a label is present the operation code follows the label. The operand list, which is
also optional, follows the operation code, and must be separated from the operation code
by one or more spaces or tabs. Every statement must be followed by a newline character
(return key) or a semicolon (;).

To translate a logic diagram such as the following into FHDL you must first choose
unique names for each of the connections.

A

B

C
D

E

F

G

H
G1

G2

G3

G4

In this example the names A-H have been chosen for the connections. Next you must
choose a unique name for the circuit (for this example we will choose "example1.") You
begin your circuit description with the following statement.

example: circuit

Chapter 1 The FHDL Gate Description Language

2

Next you must make a list of the primary inputs and outputs of the circuit. In the
example above, A, B, C, and D are primary inputs while E is a primary output. An
"input" statement is used to declare primary inputs, while an "output" statement is used to
declare primary outputs. The following statements would be used for our example.

inputs: A, B, C, D
outputs: E

Next you must describe each gate using an appropriate statement. In our example, one
"not" statement, two "and" statements, and one "or" statement will be required. These
statements do not require labels, but it is a good idea to use them anyway. The gates of
our example would be written as follows.

g1: not A,H
g2: and (H,B),F
g3: and (C,D),G
g4: or (F,G),E

The order of the statements (including the input and output statements) is arbitrary.
The operand list of a statement that describes a gate has two parts. The first part lists the
gate's inputs while the second part lists the gate's outputs. If there is more than one input,
the list of inputs must be enclosed in parentheses. Similarly if there is more than one
output, the list of outputs must be enclosed in parentheses.

Finally you must end your description with an "endcircuit" statement. The entire
description is given below.

example1: circuit
inputs A,B,C,D
outputs E

g1: not A,H
g2: and (H,B),F
g3: and (C,D),G
g4: or (F,G),E

endcircuit

FHDL "knows" about many different kinds of gates, which are listed in Appendix A.
In most cases the order of the inputs and outputs is significant.

1.2 Simulating Circuits
Put your circuit description into a file that ends with the string ".ckt". The rest of the

file name should match the name of your circuit. For the example given in the last
section, you would use the file name "example1.ckt". Once this file is created, run the
following UNIX command

fhdl example1.ckt

If you haven't made any errors, this will give you a file named "example1.c". You
must then run the following command.

cc example1.c -o example1

Chapter 1 The FHDL Gate Description Language

3

The program "example1" will simulate your circuit, but first you must create a file
named "example1.vec" which contains the test vectors for your circuit. You simulate
your circuit using the following command.

example1 <example1.vec

Each test vector represents one set of inputs for your circuit. You will get one set of
outputs for each set of inputs. Each set of inputs must appear on a separate line. The
values for each of the primary inputs must be listed in the same order as they appear on
the "input" statement. A ".vec" file for our example is illustrated below.

0,1,0,0
1,1,0,1
0,0,0,0
1,1,1,1

This file will produce the outputs:

1
0
0
1

Blank lines and lines beginning with asterisks are treated as comments in a ".vec" file.
These lines will be copied into the output file to assist you in reading the output.

More sophisticated users will wish to make use of additional features of FHDL that
are described in other memoranda. Features currently available are ROM and PLA
preprocessors, the FHDL macro processor, and the FHDL driver language. To invoke all
FHDL functions, replace the fhdl command given above with the following command.

fhdl -n example1.ckt

This command has the added benefit of performing the "cc" command automatically
for you. You may use this version of the command even if you do not use any of the
additional FHDL features, although compilation time will be somewhat longer.

1.3 Creating and Using Subcircuits.
In addition to the known gate types, you can create new ones by declaring them as

circuits. For example, suppose you want to create a two-input "NAND" with one active-
low input and one active-high input. You could do this as follows.

xnand: circuit
inputs A,B
outputs C
not A,ABAR
nand (ABAR,B),C
endcircuit

You may now use xnand as a gate in any other circuit in the same file. When you
have several circuits in the same file, the first is treated as the main circuit and all others

Chapter 1 The FHDL Gate Description Language

4

are treated as subcircuits. To use the xnand subcircuit, include a statement similar to the
following in some other circuit.

gtest: xnand (Q,R),S

You may use a subcircuit any number of times.

1.4 Wire Declarations.
A signal may be declared to be active low by using the following statement.

wire A,type=active_low

The signal A should appear as a connection in some gate of the circuit. Similarly, a
signal can be declared as unconnected by using the following statement.

wire B,type=no_connect

Signals can be declared as permanently one or permanently zero by using one of the
following statements.

zero A,E,F
one B,C

A signal can be declared to be a bus, which will cause it to be treated as a collection
of independent signals. This option makes coding easier and more readable and makes
simulations run faster. To declare a signal as a bus, use the following statement.

wire A,width=10

The width may be anything from 1 to 32. When a bus is fed into an ordinary gate, the
gate will be replicated to match the width of the signal. Different gates treat buses
differently, so check the appendix first.

The collect, distribute, and expand statements are used to connect signals and other
buses to a bus. The collect statement is used to feed a collection of signals into a bus. An
example of a collect statement is given below.

collect (a,b,c),d

The signals a, b, and c are "collected" together into the bus d. The three signals may
have any width, but the sum of the widths of the inputs cannot

be larger than the width of the output. The "position" parameter can be used to place
a, b, and c at specific points within d, as illustrated by the following statement.

collect (a,b,c),d,position=(1,3,5)

Assuming that the widths of a, b, and c are all 1, this statement inserts a, b, and c into
the odd numbered positions of d. Note that the collect statement creates the bus d, so
you cannot use several collect statements to build a bus. You have to do it all in one
statement. The "position" parameter treats the leftmost bit of the bus as position zero.
No overlap check is done for position parameters, so you must be careful.

The "distribute" statement is the reverse of the collect statement. It is used to
distribute the signals in a bus to several output signals. The following statement
distributes the signals in a bus a to two outputs x and y.

Chapter 1 The FHDL Gate Description Language

5

distribute a,(x,y)

The leftmost bits of "a" are fed to "x", and the next bits are fed to "y." The width of
"a" must be greater than or equal to the sum of the widths of "x" and "y." The "position"
parameter can be used on the distribute statement in order to specify the location within
the input where the bits of an output must start. For example, the following statement
extracts the high and low order bits from a 16-bit bus.

distribute abus,(highbit,lobit),position=(0,15)

The "expand" statement fans a width 1 signal out into every position of a bus.
Assume that the width of the signal a is 1 and the width of signal b is 5. Then the
following two statements are equivalent.

expand a,b
collect (a,a,a,a,a),b

1.5 The FHDL ROM Specification Language
The FHDL ROM specification language allows one to specify the number of address

bits, the number of bits per word, and the contents of each word. See Chapter III for a
more sophisticated ROM specification language. The contents of a word must be
specified in hexadecimal. If a ROM of constants is to be created, the FHDL ROM
specification language may be preferable to the ROM preprocessor language.

In FHDL, a ROM is a circuit containing only "romword" statements and input/output
declarations. The following is an example.

rom1: circuit
inputs address
outputs romout
wire address,width=8
wire romout,width=16
romword 7ffe
romword 8000
romword 0001
romword 07ff
endcircuit

As this example shows, each "romword" instruction supplies the value for one word
of the ROM. ROM addresses are assigned consecutively starting with zero. The word
values must be specified in hexadecimal, without the "0x" prefix. There must be exactly
one input, and the width of the input must be explicitly declared to be the number of
address bits in the ROM. There must be at least one output, and each output should have
a declared width. The maximum width for any input or output is 32. ROMs with word
length greater than 32 may be constructed using multiple outputs. When a ROM has
multiple outputs, each "romword" instruction must specify the value of each output as
illustrated below.

Chapter 1 The FHDL Gate Description Language

6

abc: circuit
inputs address
outputs o1,o2,o3
wire address,width=8
wire o1,width=4
wire o2,width=4
wire o3,width=4
romword a,b,c
romword d,e,f
romword 0,1,2
romword 3,4,5
endcircuit

As both examples illustrate, it is not necessary to specify a value for each word in the
ROM. When the FHDL compiler generates simulation code for the rom, the input
address is checked against the address of the last word specified, and if the input address
is larger, a run-time error message is issued. This provides a convenient method for
determining whether invalid ROM addresses are being issued.

1.6 The FHDL PLA Specification Language
The FHDL PLA specification language allows one to specify the number of inputs,

the number of outputs, and the contents of the AND and OR plane portion of each
wordline. See Chapter IV for a more sophisticated PLA specification language. The
contents of the AND plane must be specified in trinary where 0 and 1 represent a bit test
against the specified value and x represents don't care. The trinary string is normally
enclosed in quotes. The contents of the OR plane must be specified in hexadecimal.

In FHDL, a PLA is a circuit containing only "plaword" statements and input/output
declarations. The following is an example.

pla1: circuit
inputs a1
outputs plaout
wire a1,width=8
wire plaout,width=16
plaword "0111xxxx",7ffe
plaword "x010x01x",8000
plaword "011x0xxx",0001
plaword "0111101x",07ff
endcircuit

As this example shows, each "plaword" instruction supplies the AND and OR plane
values for one wordline of the PLA. OR plane values must be specified in hexadecimal,
without the "0x" prefix. There must be at least one input and at least one output, and each
input and output should have a declared width. The maximum width for any input or
output is 32. PLAs with more than 32 inputs and outputs may be constructed using
multiple inputs and outputs. When a PLA has multiple inputs and outputs, each
"plaword" instruction must specify the value of each input and each output as illustrated
below.

Chapter 1 The FHDL Gate Description Language

7

abc: circuit
inputs a1,a2
outputs o1,o2,o3
wire a1,width=2
wire a2,width=2
wire o1,width=4
wire o2,width=4
wire o3,width=4
plaword "xx","01",a,b,c
plaword "0x","x0",d,e,f
plaword "1x","x1",0,1,2
plaword "11","xx",3,4,5
endcircuit

As both examples illustrate, it is not necessary to specify a value for each set of input
conditions. When the FHDL compiler generates simulation code for the pla, the input
condition is checked against the conditions specified for each wordline. If no wordline is
selected by the condition, a run-time error message is issued. This provides a convenient
method for determining whether invalid PLA conditions are being issued.

1.7 Known Gate Types.

1.7.1 Simple Gate Types
and
or
nand
nor
not
xor
xnor

All of these gates may be used with buses as long as the widths of all inputs and
outputs are identical. The gates replicate themselves for each element of the bus.
Replicated gates typically simulate much faster than individually specified gates. All
gates except "not" may have an arbitrary number of inputs, but must have at least two
inputs. The "not" gate must have one input. All of these gates must have one output.
Since all of these gates represent symmetric functions, the order of the inputs is not
significant.

1.7.2 And-or-inverts and Or-and-inverts.
aoi...
oai...

These actually represent families of gates rather than a single gate. The aoi or oai
prefix must be followed by a string of digits, which define the structure of the gate. For
an aoi, each digit represents one AND gate, and the value of the digits defines the number

Chapter 1 The FHDL Gate Description Language

8

of inputs for the AND gate. The outputs of all AND gates are ORed together and the
output is inverted. The oai works in a similar fashion. Only digits 1-9 may be used, 0 is
unacceptable. There is no restriction on the number or order of the digits, but in practice
one should conform to the conventions of existing cell libraries. The inputs are clustered
from right to left in accordance with the order of the digits in the digit string. The
following is an example of an aoi gate.

aoi212 (a1,a2,b1,c1,c2),out

This gate could be translated into ands ors and nots as follows.

and (a1,a2),x1
and (c1,c2),x2
or (x1,b1,x2),x3
not x3,out

1.7.3 Flip Flops.
rsff
dff
dff1
dff2
dff3
dff4
jkff
jkff1
jkff2
jkff3
jkff4
tff
tff1
tff2
tff3
tff4

All flip flops may have one or two outputs. If one output is specified, it is the normal
uncomplemented output. If two outputs are specified, the first is the uncomplemented
output and the second is the complemented output. The two outputs must have the same
width.

The rs flip flop (rsff) has two inputs, set and reset.
The d flip flop (dff) has two inputs, d and clock.
The jk flip flop (jkff) has three inputs, j, k, and clock.
The t flip flop has two inputs toggle and clock.
For these flip flops, the inputs are all active high must be specified in the order given.
Flip-flops of the form dff1, jkff1, and tff1 are CMOS variations on the basic flip-

flops. In addition to the inputs already mentioned, each of these must also have an
inverted-clock input. Flip-flops ending in 1 have no other inputs in addition to the
inverted clock. Those ending in 2 have an active-high asynchronous set, those ending in

Chapter 1 The FHDL Gate Description Language

9

3 have an active-low asynchronous reset, and those ending in 4 have both. The additional
inputs follow the clock in the following order as appropriate <inverted-
clock>,<set>,<reset>.

If the outputs of a flip flop are buses, the gates replicate themselves for each bit in the
bus. The width of an input must be 1 or identical to the width of the outputs. If the
width of an input is 1, the input is fanned out to all of the replicated gates. Otherwise, the
individual bits in the input are routed to the individual flip flops. This replication of gates
is logical not physical, so replicated gates usually simulate much faster than a collection
of individually specified gates.

1.7.4 Tristate Gates
tbufi
tgate

These gates are similar in function. The first is an inverting tristate buffer, while the
second is a non-inverting transmission gate. When laid out, the first will have
amplification, the second will not. The inputs to these gates are identical. The first input
is the D input while the next two are clock and inverted clock. The clock is active high.
If the clock is active, the tbufi acts as an inverter while the tgate copies its input to its
output. If the clock is not active, the output of the gate does not change. (This allows
wired-or connections to work properly.)

1.7.5 Special Function Gates
expand
collect
distribute
hlcv

The "expand," "collect," and "distribute" gates are described in detail in the text of
this document. The "hlcv" gate is used to convert an active-high signal to an active-low
signal and vice versa. No logic function is performed, the value of the output is identical
to the value of an input. However, the input can be declared as active-high and the output
as active-low, or vice versa. This allows proper functioning of gates that are sensitive to
active-high, active-low declarations without introducing unnecessary logic.

1.7.6 Functional blocks.
mux
demux
decoder
encoder
comparator
adder
ram
register
counter
alu

Chapter 1 The FHDL Gate Description Language

10

1.7.6.1 Mux format

mux (inputs,control),output

The control input may be either a set of n width-1 inputs or a single width-n bus. If

the inputs and outputs are all the same width, there must be one output and 2n inputs. In
this case, the MUX is replicated for each bit in the output. If the inputs and outputs are
not all the same width, then the output must be width 1, there must be only one input, and

that must be a bus of width 2n.

1.7.6.2 Demux format

demux (input,control),(outputs)

The control input may be either a set of n width-1 inputs or a single width-n bus. If

the inputs and outputs are all the same width, there must be one input and 2n outputs. In
this case, the MUX is replicated for each bit in the input. If the inputs and outputs are not
all the same width, then the input must be width 1, there must be only one output, and

that must be a bus of width 2n.

1.7.6.3 Decoder format

decoder (control),(outputs)

The control input may be either a set of n width-1 inputs or a single width-n bus. If

the outputs are all of width one, there must be 2n of them. Otherwise there must be a

single output of width 2n.

1.7.6.4 Encoder format

encoder (control),(outputs)

The control input may be either a set of 2n width-1 inputs or a single width-2n bus. If
the outputs are all of width one, there must be n of them. Otherwise there must be a single
output of width n. This is a priority encoder.

1.7.6.5 Comparator format

comparator (leftin,rightin),(output)

 Either leftin or right in may be n width-1 signals or a width-n bus. The output must
be three width one signals or a width-3 bus. The first output is active for leftin<rightin,
the second for leftin=rightin and the third for leftin>rightin.

1.7.6.6 Adder format

adder (leftin,rightin),(output)

 Either leftin or right in may be n width-1 signals or a width-n bus. The output may
also be n width-1 signals or an width-n bus. The default is to have no carry in and no
carry out. The presence of a carry-in is specified by the attribute "carry=in" while the
presence of a carry out is specified by the attribute "carry=out." The presence of both is

Chapter 1 The FHDL Gate Description Language

11

specified by the attribute "carry=(in,out)." If carry in is present, it must follow "rightin"
in the input list and must have a width of one. Similarly carry out follows "output" in the
output list and must have a width of one. The following is an example with both.

adder (leftin,rightin,ci),(output,co),carry=(in,out)

1.7.6.7 Ram format

ram (address,datain,readwrite),(dataout)

Address, datain and dataout must be buses. Datain and dataout must have the same
width. Readwrite must be a width 1 signal which is zero for read and one for write. The
size of the ram depends on the width of the address.

1.7.6.8 Register format

register (datain,load,controlsignals,clock),
(dataout,statussignals),
options

Datain and dataout may be a set of n width-1 signals or one width-n bus. Options are
of the form option_name=option or option_name=(opt1,opt2,...). The options determine
the content of the controlsignals and statussignals fields. The available options are as
follows.

control=clear (include an asynchronous clear)
 right (include a shift-right signal)
 left (include a shift-left signal)
 set (include an asychronous set)

These signals appear in the controlsignals field in the order specified. If the control
option is not used, there are no signals in the controlsignals field.

status=all_zero (include a zero status output)
 all_ones (include a set status output)

These signals appear in the statussignals field in the order specified. If status is not
specified, there are no signals in the statussignals field.

clock=yes (create a clocked register)
 no (create an async-load register)

Default is "yes." If "yes" is specified, the clock is always the last input in the input
list.

serial=right (Include a right serial input)
 left (Include a left serial input)

This option adds serial inputs to the controlsignals field. These will appear in the
order specified, either at the begining of the controlsignals field or at the end, depending
on whether the status or control input is specified first. The right serial input is used for
left shifts and the left serial input is used for right shifts.

Chapter 1 The FHDL Gate Description Language

12

1.7.6.9 Counter format

counter (datain,controlsignals),
(dataout,statussignals),
options

The datain and dataout, if present, must be a collection of n width-1 signals, or one
width-n bus. The options are the same format as those for registers. The available
options are as follows.

control=set
 clear
 count_up
 count_down
 load

Each option causes one control signal to be included in the controlsignals field in the
order specified. If "load" is not included, then "datain" is implicitly omitted. If both
count_up and count_down are omitted, the counter will count up with each clock pulse (if
the clock is present) or with each input vector (if there is no clock).

status=all_zero
 all_ones

This is the same as for registers.

clock=yes
 no

This is the same as for registers.

dataout=yes
 no

If dataout=no is specified, the dataout field will be omitted. Default is dataout=yes.

width=<<number>>

If both datain and dataout are missing, you must use this parameter to indicate how
many bits are in the counter.

type=binary
decade

The normal (and default) type of counter is a binary counter. A decade counter counts
from zero to nine and back to zero, and must have a width of 4.

1.7.6.10 ALU format

alu
(Ainput,Binput,control),(output,statussignals),options

Ainput, Binput, and output may each be n width-1 signals or one width-n bus.
Control may be from four to six width-1 signals or a bus of width from four to six. The

Chapter 1 The FHDL Gate Description Language

13

size of the control field depends on the options. Options have the same format as for
registers and counters. The options are as follows.

control=carryin
 cenable

These options increase the size of the control field from a default of four to either five
or six depending on whether one control option or two has been specified. The exact
position of the carryin and carry enable signals really doesn't matter since the ALU
simulator considers the control field to be one n-bit field.

status=all_zero
 all_ones
 carryout

These options add status signals to the statussignals field.

function=(number, name , ...)

This parameter indicates which function is selected for each value of the control
inputs. The control field is treated as an n-bit binary number where n is either 4, 5, or 6.
Function name must be one of the following. During simulation, when the control field
has the value "number" the function indicated by "name" is performed on "Ainput" and
"Binput" and placed into "output." The available functions are listed in the following
table.

Specification Function

one 1

zero 0

a a

b b

not_a a'

not_b b'

and a&b

or a|b

xor (a&b')|(a'&b)

nand a'|b'

nor a'&b'

Chapter 1 The FHDL Gate Description Language

14

Specification Function

xnor (a&b)|(a'&b')

a_and_not_b a&b'

a_or_not_b a|b'

not_a_and_b a'&b

not_a_or_b a'|b

subtract a-b

add a+b

incr_a a+1

incr_b b+1

decr_a a-1

decr_b b-1

b_minus_a b-a

15

CHAPTER 2

Algorithmic State Machines

The statements of an algorithmic state machine description have the same format as
those of an FHDL statement (see Chapter I, section 1). The first statement of an
algorithmic state machine is a "circuit" statement that gives the name of the circuit. The
last statement is an "endcircuit" statement. The body of an ASM is declared using the
statements "asm_state," "asm_test," and "asm_cond". These statements cannot be mixed
with FHDL gate declarations. (However, a file may contain several different types of
circuits.) An "asm_state" statement is used to declare each state of a state machine, the
"asm_test" statement is used to declare tests for conditional state transfers and conditional
outputs, while the "asm_cond" statement is used to declare conditional outputs.

2.1 ASM State Declarations
The format of the "asm_state" statement is as follows.

asm_state state_name,next_statement,o=(state_outputs)

The field "state_name" gives a unique name to the state. The "state_outputs" field is a
list, separated by commas of the outputs that must be unconditionally asserted when the
machine is in this state. Any number of outputs may be specified. If only one output is
specified, the parens may be omitted. The "next_statement" field is the name of the
statement that follows this statement in the flow chart of the state machine. If the
machine transfers unconditionally to a new state, then "next_statement" will be the name
of the new state. If the state transfers to two or more states depending on certain
conditions, then "next_statement" will be the name of an "asm_test" statement.

2.2 ASM Condition Declarations
The "asm_test" statement is used to cause conditional state transfer, and to activate

conditional outputs. The format of the "asm_test" statement is as follows.

asm_test test_name,(next_statements),c=(conditions)

Peter M. Maurer
The Windows Version of this component is still under deveopment.

Chapter 2 Algorithmic State Machines

16

Any number of conditions may be specified, and each condition may have the value
true or false. The list of "next_statements" must contain one statement name for each

combination of condition states. That is, if n conditions are specified, then 2n

"next_statement" names must be specified. If one condition is specified, then the "false"
"next_statement" name must come first, and the "true" "next_statement" name must come
second. In general, you can determine the order of the "next_statement" names by
treating the combination of condition values as a string of binary digits, with zero
represented by false and one represented by true. The "next_statement" names must be
specified in ascending numeric sequence. Thus for two conditions, the "next_statement"
names must be specified in the order FF, FT, TF, and TT.

Each statement name in the "next_statement" list must be the name of another
statement. An "asm_state" statement is named to create a conditional state transfer, an
"asm_cond" statement to create a conditional output, and another "asm_test" statement is
named to create a chain of tests.

2.3 ASM Conditional Output Declarations
Conditional outputs are created by using "asm_cond" statements. The format of an

"asm_cond" statement is given below.

asm_cond statement_name,next_statement,o=(outputs)

The "statement_name" field is a unique name that is assigned to the statement. The
"next_statement" field is the name of the statement that follows this one in the flow chart
of the circuit. The "outputs" field is a list of outputs that must be activated when the
conditional output is activated. This statement should follow one or more "asm_test"
statements. The "next_statement" field may name an "asm_state," an "asm_test," or
another "asm_cond" statement.

All outputs that appear on "asm_state" and "asm_cond" statements must be declared
as primary outputs of the circuit containing them. Furthermore all conditions that appear
on an "asm_test" statement must be declared as primary inputs of the circuit. All primary
inputs and outputs of an ASM must have width 1, although they may be declared as
active-high or active-low. When an active-low output is "activated" its value is set to
zero, otherwise it is set to one. When an active-high output is activated, its value is set to
one otherwise it is set to zero. If an output is not mentioned in a state, it will be set to its
inactive value.

For active-high conditions, zero is treated as false and one is treated as true. For
active-low conditions, zero is treated as true and one is treated as false.

You must be careful that each statement belongs to only one state. In other words it
must not be possible to go from two "asm_state" statements to a particular "asm_test" or
"asm_cond" statement without going through another "asm_state." You will get several
error messages if you violate this rule. (If you violate this rule it is impossible to build a
circuit corresponding to the ASM specification, even if you could manage to simulate it
in software.)

Chapter 2 Algorithmic State Machines

17

2.4 State Machine Examples
To illustrate the use of FHDL to code simple state machines, consider the following

example.

A B

C D

x1

x2

x3

x4

x5

This statemachine would be coded in FHDL as follows.

example2: circuit
inputs x1,x2,x3,x4,x5
outputs o1,o2,o3,o4
asm_state A,testa,o=o1
asm_test testa,(A,B,C,B),c=(x1,x4)
asm_state B,testb,o=o2
asm_test testb,(B,A),c=x5
asm_state C,testc,o=o3
asm_test testc,(C,D),c=x2
asm_state D,testd,o=o4
asm_test testd,(D,B),c=x3
endcircuit

The following is a more complicated example.

Chapter 2 Algorithmic State Machines

18

This example would be coded in FHDL as follows.

example3: circuit
inputs x1,x2,x3
outputs o1,o2,o3,o4,o6,o6
asm_state A,test1,o=o1
asm_test test1,(cout1,C,C,cout2),c=(x1,x2)
asm_cond cout1,B,o=o2
asm_cond cout2,D,o=o3
asm_state B,test2,o=o4
asm_test test2,(B,A),c=x3
asm_state C,A,o=(o5,o6)
asm_state D,A
endcircuit

If an state machine requires a clock, it must be specified on the "circuit" statement,
and in the list of primary inputs. The following is a modified version of the first two
statements of example3, to include a clock.

example3: circuit clock=iclk
inputs x1,iclk,x2,x3

If it is necessary for the current state of the state machine to be visible to other logic in
your design, place the name "current_state" in the list of primary outputs. The following
is a modification of example3 to include a clock and current_state output.

example3: circuit clock=iclk
inputs x1,x2,x3,iclk
outputs o1,o2,o3,current_state,o4,o6,o6

Chapter 2 Algorithmic State Machines

19

Once a state machine has been declared, it can be used just like any other subnetwork.
The state machine can be used any number of times. Each time the state machine is used,
a new (logical) copy of the machine is created.

21

CHAPTER 3

The ROM Preprocessor

3.1 Overview
The FHDL ROM compiler is a preprocessor that provides a simple but powerful

language for specifying the contents of a ROM. The format of the ROM preprocessor
statements is modeled after that of FHDL statements. Each statement has a label field, an
opcode, and an operand field. The label field begins at the first character of the statement
and ends with a colon (:). The label field is optional for some types of statements, and
manditory for others. The opcode, which is manditory for all statements, follows the
label field, and must be separated from the label field by one or more spaces or tabs. If
no label field is present, the opcode must be preceded by one or more spaces or tabs to
signify that the label field is omitted. The operand field follows the opcode and must be
separated from the opcode by one or more spaces or tabs. The operand field consists of
one or more operands separated by commas. The format of an operand depends on the
type of statement. The operand field, and the statement, end with a newline (return key)
or a semicolon(;). The operand field of a statement can be continued to the next line by
ending a line with a comma. Spaces and tabs are not allowed in the operand field, except
preceeding or following a comma.

Labels may contain upper and lower case letters, numbers, underlines and periods.
Labels may not duplicate a ROM preprocessor keyword, nor may duplicate labels be
defined, regardless of type. Case is significant for labels, so Lab1, LAb1, and lAb1 are
three different labels. On the other hand, case is not significant in keywords, so rom,
RoM and ROM are all the same keyword.

Once a ROM description has been completed, it must be run through the ROM
preprocessor before being compiled by the FHDL compiler. Although FHDL provides a
method for describing the contents of a ROM, the method is not flexible enough for
debugging complex microcoded ROMs. Nevertheless, the native FHDL method is
probably more convenient for specifying the contents of ROMs that contain constants and
other simple forms of data. Therefore, the final section of this report contains a

Chapter 3 The ROM Preprocessor

22

description of the FHDL native method for specifying ROM contents. The ROM
preprocessor converts the preprocessor language into FHDL native mode instructions.

3.2 Specifying Fields.
Each word in a ROM is broken into one or more fields. Fields may contain many

different types of data, some examples of which are data, rom addresses, control signal
values, and so forth. Each field must be declared using a statement similar to the
following.

new_addr: field width=12,position=15

This statement declares a field named "new_addr" which has a width of 12 bits and
begins at bit 15 of the ROM word. The bits of each word are numbered from the left
starting with zero. Each field in the ROM word must be declared, even if it is never used.
The order of the "field" statements is not important, since each statement has both a width
and position associated with it. If the "width" specification is omitted, a width of one is
assumed. If the "position" specification is omitted, a position of zero is assumed. Fields
may not overlap.

3.3 Using Equates.
The width and position parameters of the "field" statement can be rather difficult to

keep track of if the number and position of your fields changes often. (This is sometimes
the case during ROM development.) The "equ" statement can be used to simplify the
process of adding new fields, and changing the size of existing ones. Suppose you have
the following three fields, declared as in the previous section.

flda: field width=3,position=0
fldb: field width=4,position=3
fldc: field width=7,position=7

If you want to add a field between flda and fldb, you must change the position of fldb
and fldc. The same is true if you change the size of flda. The following is the same three
fields coded with equates.

flda: field width=awid,position=apos
fldb: field width=bwid,position=bpos
fldc: field width=cwid,position=cpos
awid: equ 3
bwid: equ 4
cwid: equ 7
apos: equ 0
bpos: equ awid+apos
cpos: equ bwid+bpos

Using this technique, one need only concern oneself with the width and the order of
each field. Positions are calculated automatically by the preprocessor.

The right hand side of an equate may be an arbitrary expression involving constants;
the names of other equates; the operators +, -, *, and /; and parenthesis. The order of the

Chapter 3 The ROM Preprocessor

23

equate statements does not matter, as long as they do not reference one another cyclically.
Expressions may also be used to specify field widths and positions, as illustrated below.

flda: field width=awid,position=0
fldb: field width=bwid,position=bpos
fldc: field width=awid+bwid,position=bwid+bpos
awid: equ 3
bwid: equ 4
apos: equ 0
bpos: equ awid+apos

This example illustrates the rule that any place a number is acceptable, an expression
is also acceptable.

3.4 Specifying ROM words.
The "word" statement is used to specify the contents of a ROM word. The label field

of a "word" statement is optional. The operands of a "word" statement, which are called
commands, specify the contents of each field of the word. The contents of a field is
specified using an expression of the following form.

expression->field_name

To illustrate, consider the following "word" statements, which specify the contents of
three words, whose format is described by the "field" statements of the previous section.

word 5->flda,017->fldb,0x4c->fldc
word 2->flda,12->fldb,29->fldc
word 0x3->flda,0xa->fldb,0177->fldc

This example also illustrates the use of octal and hexadecimal numbers. Numbers
that begin with 0x are assumed to be in hexadecimal format. The digits
a,b,c,d,e,f,A,B,C,D,E,F are acceptable in such numbers along with the usual 0-9.
Numbers beginning with zero are assumed to be in octal format, and only the digits 0-7
are acceptable. Octal and hexadecimal numbers may be used wherever decimal numbers
are acceptable.

Since it may not be convenient to specify the contents of every field on every word,
the "field" statement allows a default value to be specified, which will be used if a
particular "word" statement does not assign a value to a field. The following is an
example of fields specified with default values.

flda: field width=3,position=0,default=4
fldb: field width=4,position=3,default=abc+def
fldc: field width=7,position=7,default=0x7f

If no default value is specified for a field, the field is assumed to have a default value
of zero.

A shorthand notation, consisting of just the field name, can be used to assign the
value "1" to a field of width 1. (This is normally considered to be activating a control
signal.) For example, if abc is a one-bit field, "1->abc" and "abc" will produce the same
result.

Chapter 3 The ROM Preprocessor

24

The "true" parameter can be used to extend this shorthand notation to multi-bit fields.
Suppose the following field declaration has been made.

xyz: field width=10,position=10,default=5,true=15

With this declaration, "15->xyz" and "xyz" will produce the same result. There is no
default value for the "true" parameter, so multi-bit fields with no "true" parameter must
have values explicitly assigned to them, or must be allowed take their default value.

One bit fields can be declared as active-high or active-low. If a field is declared as
active-low, the value assigned to it will be inverted before any output is actually done.
Thus, if abc is a one bit field that specifies the value of a control signal, the expressions
"1->abc" and "abc" will activate the control signal regardless of whether it is active-high
or active low. This inversion also applies to the default value of an active-low field.
Since active-high is the default for one bit fields, an explicit declaration of active high
does not affect the output. Multi-bit fields may not be declared as active high or active
low. The following is an example of an active high and an active low declaration.

abc: field position=12,active=low
def: field position=15,active=high

To reduce the confusion that active-high and active-low fields may cause, the
constants "%t" and "%f" can be used to assign values to one-bit fields. The constant "%t"
will turn a signal on, while "%f" will turn the signal off, regardless of whether it is active-
high or active-low. When used in an expression, "%t" acts like a 1 and "%f" acts like a
zero. These constants may be used wherever numbers are acceptable.

3.5 Required Fields
At times it may be desirable for the value of a certain field to specified by every

"word" instruction. For example, some microcode sequencers require that a "next
address" be specified with each instruction. In such a case it is possible to associate a
field with a position in the operand field of the "word" instruction. To clarify this,
consider the following instruction.

word abc,def,ghi

The command "abc" is at command-position 0, "def" is at command-position 1, and
so forth. One associates a field with a certain command position by specifying the
"cmdpos" parameter on the "field" statement. The following is an example.

flda: field width=5,position=0,cmdpos=0
fldb: field width=5,position=5,cmdpos=1
fldc: field width=5,position=10,cmdpos=2

Once these declarations have been made, each "word" statement must have at least
three operands. These three operands must be either numbers or expressions that specify
the value of the corresponding fields. The first three operands must not be of the form
"expression->field_name". The following is a more complete example.

flda: field width=5,position=0,cmdpos=0

Chapter 3 The ROM Preprocessor

25

fldb: field width=5,position=5,cmdpos=1
fldc: field width=5,position=10,cmdpos=2
 word 3,7,9
 word a+b,c,0x5

A required operand may be forced to its default value by specifying a null value for
the operand. The following statement specifies null values for three required operands.

word ,,

As this example illustrates, a null value is simply an omitted value, with the requisite
commas still in place.

3.6 Complex Commands
At times it will be necessary to specify the value of several fields in order to

accomplish a single action. An example is an arithmetic operation in a microprogrammed
computer, which usually requires the specification of operand sources, alu control signals,
and result destination. The "command" statement can be used to group a set of
commands together into a single complex command. The following is an example.

add_ab: command alu_add->alu,enab_a,enab_b,load_c
 word add_ab

Once the command "add_ab" is defined, it can be used by many different "word"
statements. Complex commands and simple commands may be mixed both on "word"
statements and "command" statements. The order of the "command" statements and
word statements does not matter, but "command" statements may not reference one
another circularly.

3.7 ROM addresses.
When a label is used on a "word" statement, the rom address of the word defined by

the "word" statement is assigned as the value of the label. The label may be used in an
expression exactly as if it were an the label of an equate statement. Furthermore, an
asterisk ("*") may be used in an expression to specify the rom address of the current
"word" statement (or the next "word" statement if it appears in some other type of
statement). The following illustrates the use of labels and rom addresses. in the
following it is assumed that the microcode sequencer being used forces a jump on every
instruction.

flda: field position=0
fldb: field position=1
jadr: field position=3,width=12,cmdpos=0
a: word b,flda,fldb
b: word c,fldb
c: word *-2,flda

Normally ROM addresses are assigned consecutively starting from zero. The "org"
statement can be used to change the rom address of the next "word" instruction. An
example of an "org" statement given below.

Chapter 3 The ROM Preprocessor

26

org *+10

This statement will leave a ten word "hole" in the ROM. When an expression appears
on an "org" statement, all equates and rom addresses that are needed to evaluate the
expression must appear before the "org" statement in the text. This is the only restriction
on statement ordering.

When a hole is left in a ROM, the preprocessor adds null words to fill the hole. A
null word is created by assigning every field its default value.

The preprocessor normally will expand a ROM to a size large enough to hold all
defined words, including holes. The number of address bits will be enough to address all
specified words, but no larger. If it is necessary to limit the rom to a specific number of
address bits, the "size" statement must be used. An example of a size statement is given
below.

size 256

This statement will limit the rom to 8 address bits (no more, no less) and 256 words.
The operand of the size statement may be an expression.

3.8 Adding New Opcodes
Some ROM sequencers have several commands that can be used to do conditional

and unconditional jumps, subroutine calls, loops and so forth. In order to simplify the
creation of microcode for these sequencers, the ROM preprocessor allows these
commands to be defined as opcodes. The first step is to define a field as an opcode field.
The following is an example of an opcode field.

opfld: field width=12,position=10,type=opcode

Next, each new opcode must be defined using an equate instruction, as illustrated
below.

jump: equ 1
cjump: equ 2
return: equ 3

The values assigned to these opcodes must, of course, be meaningful to the microcode
sequencer. Now, the defined opcodes may be used in place of the "word" opcode to
specify a "word" statement. However when the "word" opcode is used, the opcode field
will be assigned its default value. When one of the new opcodes is used, the opcode field
will be assigned the value of the new opcode.

For claritly, defined symbols may be used in the place of the "word" opcode, even if
no opcode field has been defined. In this case, the values assigned to the opcodes are
immaterial.

3.9 ROM Output
Recall that the rom preprocessor prepares data for the FHDL compiler. Since the

FHDL compiler cannot handle buses whose width is greater than 32, the output of the
rom will be grouped into blocks of 32 bits starting from the left. Of course, the last (or
only) block may have fewer than 32 bits. Depending on how the output of the ROM is

Chapter 3 The ROM Preprocessor

27

used by the rest of the circuit, it may be convienient to group the outputs differently. The
"output" statement can be used to do this. The operands of the output statement
determine how the outputs of the ROM are grouped. One group of outputs will be
created for each operand. Each operand must be an expression that gives the size of the
group. The value of the expression must range from 1 to 32. An example of an output
statement is given below.

output awid,bwid,cwid

The most convenient grouping of outputs is by field. Note that this grouping is
logical rather than physical.

3.10 ROMs With Multiple Word Formats
At times it is necessary or useful to be able to specify more than one command

format. The most obvious use of multiple formats would be when the ROM words
actually have more than one physical format. Some microcode sequencers use different
physical formats for jumps, conditional jumps and ordinary microinstructions. Another
less obvious use of multiple formats is when you wish to give the illusion of multiple
command formats, even though there is only one physical format. To illustrate, consider
the case of providing conditional and unconditional jumps. One way to implement
unconditional jumps is to treat them as conditional jumps and use a condition that is
always true. The same scheme could be used to implement ordinary micro-instructions as
conditional jumps using a condition that is always false. For conditional jumps it would
be convenient to have two required fields, condition, and jump address. On the other
hand, it would be inconvenient to require explicit specification of conditions on
unconditional jumps and ordinary instructions. Similarly on ordinary microinstructions
no required operands would seem to be most appropriate.

The ROM preprocessor allows multiple formats to be declared, and allows each
opcode to be associated with a particular format. Let us continue with the
jump/conditional-jump/ordinary example, and assume that every rom word has a
condition field and a next address field. The condition field is used by the sequencer to
select a particular condition to be tested. Let us assume that 0 will select "always-false"
and 1 will select "always-true." The first step is to define the opcodes, as follows.

jump: equ 1
cjump: equ 2
cont: equ 3

In this example, we will not use an opcode field, so the three symbols could just as
easilly be given the same value. We give them different values just in case we change our
mind about having an opcode field. The next step is to assign each opcode to a format.
The "format" statement is used for this purpose. The following illustrates.

fjump: format jump
fcjump: format cjump
fcont: format cont

Chapter 3 The ROM Preprocessor

28

The operand field of the "format" statement is a list of one or more command names.
The label of the statement is the name of the format. All of the opcodes in the operand
field will be associated with the format named in the label.

As fields are defined, they also must be assigned to a format. The following is the
definition of the condition field for each of the three formats.

conda: field position=0,width=3,cmdpos=1,format=fcjump
condb: field position=0,width=3,default=1,
 format=fjump,type=constant
condc: field position=0,width=3,default=0,
 format=fcont,type=constant

Note that these three fields all occupy the same place in the rom word. When
multiple formats are used, the rules for overlapping fields are modified somewhat. There
may not be any overlapping fields in a single format. Furthermore, there must be a
definition for each field in each format. The "type=constant" parameter may be used to
prevent the user from assigning a value to a field in a particular format. The ROM
preprocessor will issue an error message if a value is assigned to a constant field.

The next step in this example is to define the address fields. This field will be
constant zero for ordinary microinstructions (cont opcode), it will be a required field for
the other two opcodes. It must be specified in command position zero for jumps and
command position one for conditional jumps. The following is the definition of these
fields.

addra: field position=3,width=8,default=0,
 format=fcont,type=constant
addrb: field position=3,width=8,cmdpos=(0,1),
 format=(fjump,fcjump)

Note that only two field descriptions are required. The format parameter can be used
to assign a field to more than one format, as illustrated above. When the "cmdpos"
parameter is used with a field assigned to more than one format, a single number can be
used to specify that the field appears in the same command position in each format, or a
list of numbers can be used (one per format) to specify that the field appears at different
command positions in each format.

For the sake of illustration, let us assume that all romwords have three one-bit control
fields, regardless of format, and that none of these are required fields. We can define
these fields as follows.

ctl_a: field position=11,format=(fcont,fjump,fcjump)
ctl_b: field position=12,format=(fcont,fjump,fcjump)
ctl_c: field position=13,format=(fcont,fjump,fcjump)

To complete the example, here are some statements that define rom words.

Chapter 3 The ROM Preprocessor

29

beg: cont ctl_a
 cont
 cont
 cjump xcond,endit,ctl_c
 jump beg,ctl_a
endit: jump *,ctl_b

The first format defined in the text is the default format. All fields without "format"
parameters, are assigned to the default format. The default format is used for "word"
opcodes and for opcodes that are not explicitly mentioned in a "format" statement. The
default format is used for creating dummy words to fill holes left by "org" statements.

3.11 Include Statements
ROM coding can become quite tedious if every ROM description had to specify a

complete set of formats. This would especially be true if you needed to create several
different ROMS for use with the same sequencer and the same (or very nearly so)
hardware. It may also be the case that you don't really want your microprogrammers to
know all of the details of the field definitions and format definitions. The "include"
statement provides a means for getting around these problems. An example of an
"include" statement is given below.

include "/usr/fhdl/rom/rom1"

Note that the file name is enclosed in quotes. The quotes prevent the slashes from
being interpreted as division signs. A full path name, of course, is taken to be the name
of the file to be included. Something other than a full path name can be interpreted in
two ways. If the name of an include library is placed on the command line, all include
file names are assumed to be relative to the include library. (The include library must be
a directory.) If no include directory is supplied, all include file names are assumed to be
relative to the current directory.

3.12 Running the preprocessor
When you create your ROM you may include the ROM preprocessor code in the same

file as your FHDL code. The ROM preprocessor code must begin with a statement of the
following form.

my_rom: rom

The ROM preprocessor code must end with the following statement.

 endrom

The "rom" and "endrom" statements replace the "circuit" and "endcircuit" statements
used in FHDL code. The ROM preprocessor expects all input to be supplied from the
standard input and produces all output on the standard output. Furthermore, all non-rom
code is passed unchanged from the input to the output, so ROM preprocessor code can be
mixed with FHDL in the same file. More than one ROM may be specified in the same
file. The following command invokes the ROM preprocessor. (This command is
invoked automatically if the fhdl command with the "-n" option is used.)

Chapter 3 The ROM Preprocessor

30

romasm <testit.rom >testit.ckt

The output of the rom preprocessor may also be directly piped into the FHDL
compiler as follows.

romasm <testit.rom | fhdl >testit.c

If an include library is required, specify it as follows (rom.stuff is the name of a
directory containing your include files).

romasm rom.stuff <testit.rom | fhdl >testit.c

3.13 Using ROMs
As stated above, the ROM preprocessor converts the preprocessor language into

FHDL ROM specifications. One uses the ROM by calling it just as if it were an ordinary
circuit. The name of the ROM is given by the label on the "rom" statement. To create
microcode you must supply both the ROM specifications and the ROM sequencer
specifications. The ROM preprocessor provides no microcode sequencing hardware, you
must provide all sequencer hardware in FHDL. In addition you must provide a
microinstruction register, and route the control signals from this register to the
appropriate points in your design.

31

CHAPTER 4

The PLA Preprocessor

4.1 Overview
The FHDL PLA compiler is a preprocessor that provides a simple but powerful

language for specifying the contents of a PLA. The format of the PLA preprocessor
statements is modeled after that of FHDL statements. Each statement has a label field, an
opcode, and an operand field. The label field begins at the first character of the statement
and ends with a colon (:). The label field is optional for some types of statements, and
manditory for others. The opcode, which is manditory for all statements, follows the
label field, and must be separated from the label field by one or more spaces or tabs. If
no label field is present, the opcode must be preceded by one or more spaces or tabs to
signify that the label field is omitted. The operand field follows the opcode and must be
separated from the opcode by one or more spaces or tabs. The operand field consists of
one or more operands separated by commas. The format of an operand depends on the
type of statement. The operand field, and the statement, end with a newline (return key)
or a semicolon(;). The operand field of a statement can be continued to the next line by
ending a line with a comma. Spaces and tabs are not allowed in the operand field, except
preceeding or following a comma.

Labels may contain upper and lower case letters, numbers, underlines and periods.
Labels may not duplicate a PLA preprocessor keyword, nor may duplicate labels be
defined, regardless of type. Case is significant for labels, so Lab1, LAb1, and lAb1 are
three different labels. On the other hand, case is not significant in keywords, so pla, Pla
and PLA are all the same keyword.

Once a PLA description has been completed, it must be run through the PLA
preprocessor before being compiled by the FHDL compiler. Although FHDL provides a
method for describing the contents of a PLA, the method is not flexible enough for
specifying and debugging complex PLAs. Nevertheless, the final section of this report
contains a description of the FHDL native method for specifying PLA contents. The PLA
preprocessor converts the preprocessor language into FHDL native mode instructions.

Chapter 4 The PLA Preprocessor

32

4.2 Specifying Fields.
Each PLA wordline consists of two sections, the AND plane section and the OR plane

section. Each section is broken into one or more fields. AND plane fields contain inputs
that will be tested by the PLA. OR plane fields may contain many different types of data,
some examples of which are data, control signal values, and so forth. Each field must be
declared using a statement similar to the following.

new_state: field width=12,position=15

This statement declares an OR plane field named "new_addr" which has a width of 12
bits and begins at bit 15 of the OR plane. The bits of each word are numbered from the
left starting with zero. Each field in the OR plane must be declared, even if it is never
used. The order of the "field" statements is not important, since each statement has both a
width and position associated with it. If the "width" specification is omitted, a width of
one is assumed. If the "position" specification is omitted, a position of zero is assumed.
Or plane fields may not overlap.

AND plane fields are declared in a similar fashion as the following declaration
illustrates.

cond_one: field width=1,position=15,type=input

The only difference between an AND plane declaration and an OR plane declaration
is the presence of the parameter "type=input". The "position" parameter indicates a
position within the AND plane. All AND plane fields must be declared even if they are
always "don't care." AND plane fields may not overlap.

4.3 Using Equates.
The width and position parameters of the "field" statement can be rather difficult to

keep track of if the number and position of your fields changes often. (This is often the
case during PLA development.) The "equ" statement can be used to simplify the process
of adding new fields, and changing the size of existing ones. Suppose you have the
following three OR plane fields, declared as in the previous section.

flda: field width=3,position=0
fldb: field width=4,position=3
fldc: field width=7,position=7

If you want to add a field between flda and fldb, you must change the position of fldb
and fldc. The same is true if you change the size of flda. The following is the same three
fields coded with equates.

Chapter 4 The PLA Preprocessor

33

flda: field width=awid,position=apos
fldb: field width=bwid,position=bpos
fldc: field width=cwid,position=cpos
awid: equ 3
bwid: equ 4
cwid: equ 7
apos: equ 0
bpos: equ awid+apos
cpos: equ bwid+bpos

Using this technique, one need only concern oneself with the width and the order of
each field. Positions are calculated automatically by the preprocessor.

The right hand side of an equate may be an arbitrary expression involving constants;
the names of other equates; the operators +, -, *, and /; and parenthesis. The order of the
equate statements does not matter, as long as they do not reference one another cyclically.
Expressions may also be used to specify field widths and positions, as illustrated below.

flda: field width=awid,position=0
fldb: field width=bwid,position=bpos
fldc: field width=awid+bwid,position=bwid+bpos
awid: equ 3
bwid: equ 4
apos: equ 0
bpos: equ awid+apos

This example illustrates the rule that any place a number is acceptable, an expression
is also acceptable.

4.4 Specifying the Value of AND and OR Plane
Fields.

The "word" statement is used to specify the contents of one or more PLA wordlines.
The label field specifies the contents of the AND plane while the operand field specifies
the contents of the OR plane. The labels of "word" statements are called "conditions"
while the operands are called commands. A simple condition is specified using an
expression of the following form.

field_name=expression

The field_name must be the name of an AND plane field, while the expression must
supply the value against which the field will be tested. A simple command is specified
using an expression of the following form.

expression->field_name

The field_name must be the name of an OR plane field, while the expression supplies
the value that will be stored in the field. To illustrate, let us add the following AND
plane field declarations to the three OR plane declarations specified in the last section.

cnda: field position=0,width=1,type=input
cndb: field position=1,width=1,type=input

Chapter 4 The PLA Preprocessor

34

The following "word" statements specify the contents of three wordlines.

cnda=1: word 5->flda,017->fldb,0x4c->fldc
cndb=0: word 2->flda,12->fldb,29->fldc
cnda=0: word 0x3->flda,0xa->fldb,0177->fldc

This example also illustrates the use of octal and hexadecimal numbers. Numbers
that begin with 0x are assumed to be in hexadecimal format. The digits
a,b,c,d,e,f,A,B,C,D,E,F are acceptable in such numbers along with the usual 0-9.
Numbers beginning with zero are assumed to be in octal format, and only the digits 0-7
are acceptable. Octal and hexadecimal numbers may be used wherever decimal numbers
are acceptable.

Since it may not be convenient to specify the contents of every OR plane field on
every word, the "field" statement allows a default value to be specified, which will be
used if a particular "word" statement does not assign a value to a field. The following is
an example of fields specified with default values.

flda: field width=3,position=0,default=4
fldb: field width=4,position=3,default=abc+def
fldc: field width=7,position=7,default=0x7f

If no default value is specified for an OR plane field, the field is assumed to have a
default value of zero.

No default value may be specified for AND plane fields. An AND plane field is
assumed to have a default value of "don't care". The only way to specify a "don't care"
value for an AND plane field is to allow it to take its default value.

A shorthand notation, consisting of just the field name, can be used to assign the
value "1" to an OR plane field of width 1. (This is normally considered to be activating a
control signal.) For example, if abc is a one-bit field, "1->abc" and "abc" will produce the
same result.

The "true" parameter can be used to extend this shorthand notation to multi-bit OR
plane fields. Suppose the following field declaration has been made.

xyz: field width=10,position=10,default=5,true=15

With this declaration, "15->xyz" and "xyz" will produce the same result. There is no
default value for the "true" parameter, so multi-bit OR plane fields with no "true"
parameter must have values explicitly assigned to them, or must be allowed take their
default value.

One bit OR plane fields can be declared as active-high or active-low. If a field is
declared as active-low, the value assigned to it will be inverted before any output is done.
Thus, if abc is a one bit field that specifies the value of a control signal, the expressions
"1->abc" and "abc" will activate the control signal regardless of whether it is active-high
or active low. This inversion also applies to the default value of an active-low field.
Since active-high is the default for one bit fields, an explicit declaration of active high
does not affect the output. Multi-bit OR plane fields and AND plane fields may not be
declared as active high or active low. The following is an example of an active high and
an active low declaration.

Chapter 4 The PLA Preprocessor

35

abc: field position=12,active=low
def: field position=15,active=high

To reduce the confusion that active-high and active-low fields may cause, the
constants "%t" and "%f" can be used to assign values to one-bit fields. The constant "%t"
will turn a signal on, while "%f" will turn the signal off, regardless of whether it is active-
high or active-low. When used in an expression, "%t" acts like a 1 and "%f" acts like a
zero. These constants may be used wherever numbers are acceptable.

4.5 Required OR Plane Fields
At times it may be desirable for the value of certain OR plane fields to specified by

every "word" instruction. It is possible to associate a field with a position in the operand
field of the "word" instruction and thereby force it to be specified for every wordline. To
clarify this, consider the following instruction.

a=1: word abc,def,ghi

The command "abc" is at command-position 0, "def" is at command-position 1, and
so forth. One associates a field with a certain command position by specifying the
"cmdpos" parameter on the "field" statement. The following is an example.

flda: field width=5,position=0,cmdpos=0
fldb: field width=5,position=5,cmdpos=1
fldc: field width=5,position=10,cmdpos=2

Once these declarations have been made, each "word" statement must have at least
three operands. These three operands must be either numbers or expressions that specify
the value of the corresponding fields. The first three operands must not be of the form
"expression->field_name". The following is a more complete example.

flda: field width=5,position=0,cmdpos=0
fldb: field width=5,position=5,cmdpos=1
fldc: field width=5,position=10,cmdpos=2
b=2: word 3,7,9
c=0: word a+b,c,0x5

A required operand may be forced to its default value by specifying a null value for
the operand. The following statement specifies null values for three required operands.

a=1: word ,,

As this example illustrates, a null value is simply an omitted value, with the requisite
commas still in place.

4.6 Complex Commands
At times it will be necessary to specify the value of several fields in order to

accomplish a single action. An example is an arithmetic operation in a microprogrammed
computer, which usually requires the specification of operand sources, alu control signals,
and result destination. The "command" statement can be used to group a set of
commands together into a single complex command. The following is an example.

Chapter 4 The PLA Preprocessor

36

add_ab: command alu_add->alu,enab_a,enab_b,load_c
a=1: word add_ab

Once the command "add_ab" is defined, it can be used by many different "word"
statements. Complex commands and simple commands may be mixed both on "word"
statements and "command" statements. The order of the "command" statements and
word statements does not matter, but "command" statements may not reference one
another circularly.

4.7 Complex Conditions
At times it will be necessary to specify the value of several fields in order to detect a

certain condition. There are two ways to specify complex conditions. First, the condition
on a "word" statement may contain the logical operators "&" (AND) and "|" (OR). AND
has precedence over OR, but parentheses may be used to override the precedence. The
second method is to use a "condition" statement to define a condition, and then use the
name of the condition on the "word" statement. The following is an example.

cnd_abc: condition a=1&b=2&c=0
cnd_abc: word 0x1->flda

Once the condition "cnd_abc" is defined, it can be used by many different "word"
statements. Defined conditions such as "cnd_abc" and simple conditions such as "a=1"
may be combined in a single logical expression both on a "word" statement and on a
"condition" statement. The order of the "condition" statements and the "word" statements
does not matter, but "condition" statements may not reference one another circularly.

When a complex condition using the OR connective appears on a "word" statement,
the condition is reduced to sum-of-products form and one wordline is generated for each
product term. This must be done because the AND plane is incapable of executing the
OR function. This procedure pushes the "OR" connective processing into the OR plane.
Thus a single "word" statement may generate many wordlines.

4.8 Limiting the Number of Wordlines
If you must limit the number of wordlines in your PLA, include the following

statement in your PLA description.

size <expression>

The expression may be an explicit number, or it may be a complex expression. In
either case an error message will be issued if the number of wordlines exceeds the
expression on the "size" statement. Only one size statement per PLA description is
allowed.

4.9 Adding New Opcodes
For clarity the PLA preprocessor allows the "word" opcode to be replaced by one or

more user defined opcodes. The opcode can be used to specify the value of an OR plane
field. The first step is to define an OR plane field as an opcode field. The following is an
example of an opcode field.

Chapter 4 The PLA Preprocessor

37

opfld: field width=12,position=10,type=opcode

Next, each new opcode must be defined using an equate instruction, as illustrated
below.

add1: equ 1
subt1: equ 2
noop: equ 3

Now, the defined opcodes may be used in place of the "word" opcode to specify a
"word" statement. When the "word" opcode is used, the opcode field will be assigned its
default value. When one of the new opcodes is used, the opcode field will be assigned
the value of the new opcode.

Defined symbols may be used in the place of the "word" opcode, even if no opcode
field has been defined. In this case, the values assigned to the opcodes are immaterial.

4.10 The Begin and End Statements
There are cases where a group of wordlines must all specify the same condition and

the same set of commands. The "begin" and "end" statements allow conditions and
commands to be specified for sets of wordlines without repetitive coding. To illustrate
consider the following example.

a=1: begin ADD->next_state
b=2: word 1->sub
c=0: word 2->sub
d=3: word SUBT->next_state,0->sub

end

Without the "begin" and "end" statements this example would be written as follows.

a=1&b=2: word ADD->next_state,1->sub
a=1&c=0: word ADD->next_state,2->sub
a=1&d=3: word SUBT->next_state,0->sub

The condition on a "begin" statement is ANDed with the conditions on the "word"
statements contained between the "begin" and "end" statements. Conditions on the
"word" statements may not override conditions on the "begin" statement. Commands on
the "begin" statement are combined with commands on the "word" statement. The
commands on the "word" statement may override the commands on the "begin"
statement. "Begin" statements may be nested arbitrarily.

4.11 Grouping Input and Output Fields
Recall that the PLA preprocessor prepares data for the FHDL compiler. Since the

FHDL compiler cannot handle buses whose width is greater than 32, the inputs and the
outputs of the PLA will be grouped into blocks of 32 bits starting from the left. Of
course, the last (or only) block may have fewer than 32 bits. Depending on how the
inputs and outputs of the PLA are used by the rest of the circuit, it may be convienient to
group them differently. The "input" and "output" statements can be used to do this. The
operands of the "input" and "output" statements determine how the inputs and outputs of

Chapter 4 The PLA Preprocessor

38

the PLA are grouped. One group of inputs or outputs will be created for each operand.
Each operand must be an expression that gives the size of the group. The value of the
expression must range from 1 to 32. An example of an input and an output statement is
given below.

output awid,bwid,cwid
input condawid,condbwid

The most convenient grouping of inputs and outputs is by field. Note that this
grouping is logical rather than physical.

4.12 Multiple OR Plane Formats
At times it may be convienient to be able to specify more than one OR-plane format.

The most obvious use of multiple formats would be when the OR plane actually has more
than one physical format. In this case one OR plane field is being used as a format
indicator for the remainder of the OR plane portion of the wordline. Another less obvious
use of multiple formats is when you wish to give the illusion of multiple command
formats, even though there is only one physical format. To illustrate, consider the case of
providing a set of one-operand commands, a set of two-operand commands and a set of
three-operand commands in the same PLA description. Let us assume that there are
three OR plane fields and two AND plane fields. The three-operand commands will
supply values for all three fields, while the one- and two-operand fields will cause default
values to be assigned to the unspecified fields.

The PLA preprocessor allows multiple formats to be declared, and allows each
opcode to be associated with a particular format. The first step is to define the opcodes,
as follows.

oneop: equ 1
twoop: equ 2
threeop: equ 3

In this example, we will not use an opcode field, so the three symbols could just as
easilly be given the same value. We give them different values just in case we change our
mind about having an opcode field. The next step is to assign each opcode to a format.
The "format" statement is used for this purpose. The following illustrates.

f1: format oneop
f2: format twoop
f3: format threeop

The operand field of the "format" statement is a list of one or more opcodes. The
label of the statement is the name of the format. All of the opcodes in the operand field
will be associated with the format named in the label.

As fields are defined, they also must be assigned to a format. The following is the
definition of the field that is used only by the three operand format.

Chapter 4 The PLA Preprocessor

39

fld3a: field position=0,width=3,cmdpos=2,format=f3
fld3b: field position=0,width=3,default=1,

format=f2,type=constant
fld3c: field position=0,width=3,default=0,

format=f1,type=constant

Note that these three fields all occupy the same place in the OR plane. When multiple
formats are used, the rules for overlapping fields are modified somewhat. There may not
be any overlapping fields in a single format. Furthermore, there must be a definition for
each field in each format. The "type=constant" parameter may be used to prevent the user
from assigning a value to a field in a particular format. The PLA preprocessor will issue
an error message if a value is assigned to a constant field.

The next step in this example is to define the field that will be shared by two operand
and three operand commands. This field will be constant zero for one-operand opcodes.
It must be specified in command position zero for two-operand opcodes and command
position one for three-operand opcodes. The following is the definition of these fields.

fld2a: field position=3,width=8,default=0,
format=f1,type=constant

fld2b: field position=3,width=8,cmdpos=(0,1),
format=(f2,f3)

Note that only two field descriptions are required. The format parameter can be used
to assign a field to more than one format, as illustrated above. When the "cmdpos"
parameter is used with a field assigned to more than one format, a single number can be
used to specify that the field appears in the same command position in each format, or a
list of numbers can be used (one per format) to specify that the field appears at different
command positions in each format. Now let us define the field that is shared between all
three formats.

fld3: field position=11,width=1,cmdpos=(0,1,0),
format=(f1,f2,f3)

The following is the definition of the two AND plane fields. Note that AND plane
fields have a single format.

ca: field position=0,width=3,type=input
cb: field position=3,width=4,type=input

To complete the example, here are some statements that define wordlines.

ca=1: oneop 1
ca=2: twoop 5,0
cb=3: threeop 0,8,3
ca=4&cb=2: threeop 1,9,2
cb=4: oneop 0
cb=7: twoop 6,1

The first format defined in the text is the default format. All fields without "format"
parameters, are assigned to the default format. The default format is used for "word"
opcodes and for opcodes that are not explicitly mentioned in a "format" statement.

Chapter 4 The PLA Preprocessor

40

4.13 Include Statements
PLA coding could become quite tedious if every PLA description had to specify a

complete set of formats. This would especially be true if you needed to create several
different PLAs to control the same hardware. It may also be the case that you don't really
want your PLA coders to know all of the details of the field definitions and format
definitions. The "include" statement provides a means for solving these problems. An
example of an "include" statement is given below.

include "/usr/fhdl/pla/pla1"

Note that the file name is enclosed in quotes. The quotes prevent the slashes from
being interpreted as division signs. A full path name, of course, is taken to be the name
of the file to be included. Something other than a full path name can be interpreted in
two ways. If the name of an include library is placed on the command line, all include
file names are assumed to be relative to the include library. (The include library must be
a directory.) If no include directory is supplied, all include file names are assumed to be
relative to the current directory.

4.14 Running the preprocessor
When you create your PLA you may include the PLA preprocessor code in the same

file as your FHDL code. The PLA preprocessor code must begin with a statement of the
following form.

my_pla: pla

The PLA preprocessor code must end with the following statement.

endpla

The "pla" and "endpla" statements replace the "circuit" and "endcircuit" statements
used in FHDL code. The PLA preprocessor expects all input to be supplied from the
standard input and produces all output on the standard output. Furthermore, all non-rom
code is passed unchanged from the input to the output, so PLA preprocessor code can be
mixed with FHDL in the same file. More than one PLA may be specified in the same
file. The following command invokes the PLA preprocessor. (This command is invoked
automatically when the fhdl command with the "-n" option is used.)

plasm <testit.pla >testit.ckt

The output of the PLA preprocessor may also be directly piped into the FHDL
compiler as follows.

plasm <testit.pla | fhdl >testit.c

If an include library is required, specify it as follows (pla.stuff is the name of a
directory containing your include files).

plasm pla.stuff <testit.pla | fhdl >testit.c

Chapter 4 The PLA Preprocessor

41

4.15 Using PLAs
As stated above, the PLA preprocessor converts the preprocessor language into FHDL

PLA specifications. One uses the PLA by calling it just as if it were an ordinary circuit.
The name of the PLA is given by the label on the "pla" statement. To create a
microcoded PLA you must supply both the PLA specifications and the PLA sequencer
specifications.

43

CHAPTER 5

The MACRO Preprocessor

5.1 Overview
The FHDL macro processor was designed to provide a convenient method for

expanding the FHDL language. Currently the FHDL compiler recognizes functional
blocks such as registers and ALUs. The FHDL macro processor provides a method for
defining new functional blocks and for implementing other language extensions. The
macro processor can also be used to extend the capabilities of the FHDL ROM and PLA
preprocessors.

The syntax of an FHDL macro statement is identical to that of an ordinary FHDL
statement. Each statement contains a label field, an opcode, and an operand field. The
label field starts at the first character of the statement and ends with a colon (:). The label
field is optional for most macro statements. The opcode, which is mandatory for all
statements, must be separated from the label field by one or more spaces or tabs. If there
is no label field, the opcode must be preceded by one or more spaces or tabs to signify
that the label field is missing. The operand field, which must be separated from the
opcode by one or more spaces or tabs, consists of one or more operands separated by
commas. The operand field is optional for some statements. Every statement must be
terminated by a newline character (return key) or a semicolon (;). A statement normally
occupies only one line, but if the operand field ends with a comma, the operand field is
assumed to be continued on the next line.

All language extensions are implemented in the form of macro instructions. Macro
definitions may be included with the FHDL text that uses them, or they may be placed in
one or more macro libraries. Placement of macro instructions is discussed in detail in the
following sections.

Chapter 5 The MACRO Processor

44

5.2 A Simple Macro Definition
Suppose you want to define a functional block that will invert three signals

simultaneously. An example of the functional block, as it would appear in the FHDL
text, is given below.

abc: not3 (a,b,c),(abar,bbar,cbar)

The following macro definition could be used to define the "not3" functional block.
(This block is simple enough to be defined using FHDL subnetworks, but we will quickly
move to more complicated examples.)

not3: 'macro
'input 'a,'b',c
'output 'd,'e,'f
not 'a,'d
not 'b,'e
not 'c,'f
'endmacro

This example contains several instances of macro keywords and variables. All macro
keywords begin with the character ', as do all macro variables. This example also
contains occurrences of the two types of statements recognized by the macro processor.
Any statement that has a macro keyword for an opcode is a preprocessor statement. Any
other statement is a text statement. Preprocessor statements are used to define macros
and variables, and to control the processing of text statements. Text statements are used
to generate text. In the preceding example, the first three statements are preprocessor
statements, the next three are text statements, and the last statement is a preprocessor
statement.

All macro definitions must begin with a 'macro statement and end with an 'endmacro
statement. The label on the 'macro statement gives the name of the macro. Macro
definitions may not be nested, and a macro may not generate the definition of another
macro. The following statement, which invokes the "not3" macro, is an example of a
macro call.

qed: not3 (x,y,z),(q,e,d)

The macro preprocessor removes all macro calls and replaces them with the text
generated by the text statements of the macro definition. In this case the result will be as
follows.

not x,q
not y,e
not z,d

Note that the label "qed" has been thrown away. The two macro statements 'input and
'output define macro variables. The value of these variables is taken from the macro call.
The value of variable 'a will be the text of the first element of the input list of the macro
call, while the value of the variable 'f will be the text of the third element of the output
list. Variables defined using 'input and 'output statements are of the type "string." As
will be explained below, macro variables may be of three different types, string, integer,

Chapter 5 The MACRO Processor

45

and list. The scope of macro variables is the macro definition. When the name of a
macro variable is encountered in a text statement, the value of the variable replaces the
name. Only one scan of each text statement is done.

The number of inputs and outputs in the macro call need not match the number of
inputs and outputs declared in the macro definition. Extra inputs and outputs are ignored,
while variables corresponding to missing inputs and outputs contain the null string.

5.3 A More Complicated Example
If it is necessary to guarantee that "not3" actually has three inputs and three outputs,

the macro definition must explicitly perform the test, as illustrated in the next example.

not3: 'macro
'inputs 'a,'b'c
'outputs 'd,'e,'f
'if 'count('ilist)'!=3
'error s,"not3 should have 3 inputs"
'exit
'endif
'if 'count('olist)'!=3
'error s,"not3 should have 3 outputs"
'exit
'endif
not 'a,'d
not 'b,'e
not 'c,'f
'endmacro

This macro definition illustrates the use of several new features. First is the
conditional statement 'if. An 'if statement must have one operand, and must be followed
in the text by an 'endif statement. The operand is usually a conditional expression as
shown in the example. The operators "'!=", "'==", "'<=", "'>=", "'<", and "'>" may be used
to form conditional tests. (Note that each of these operators begins with an apostrophe.)
The operators "&&", "||", and "!" (and, or, not) may also be used to form complex
conditions. Of course, parentheses are also acceptable. If the condition is true, then the
statements between the 'if statement and the 'endif statement are processed, otherwise
they are skipped. A general arithmetic expression may be used as the operand of an 'if
statement. When this is done, zero represents false and nonzero represents true. 'if
statements may be nested arbitrarily. Each 'if statement must have a corresponding 'endif
statement. As will be explained below, an 'if statement can be combined with an 'else
statement and/or one or more 'elif (else-if) statements.

WARNING!! The operators "!=", "==", "<=", ">=", "<", and ">" are also treated as
legal operators by the macro processor. HOWEVER, these operators are considered to be
comparison operators used by other FHDL parsers. These operators will be passed
through unchanged to the output. Check each of your comparison operators carefully to
be sure that you have not used the wrong type. To guard against misuse of comparison
operators, the macro processor will recognize the operators "$NE", "$EQ", "$LE", "$GE",

Chapter 5 The MACRO Processor

46

"$LT" and "$GT" as valid comparison operators. Exclusive use of these operators will
guard against problems with missing apostrophes.

The variables 'ilist and 'olist are built-in list-type variables whose values are the input
list and output list of the macro call. The built-in function 'count may be applied to any
list-type variable to obtain the number of items in the list.

The 'error statement is used to send error messages to the user. The first operand
gives the severity of the message (i=information only, w=warning, s=severe(output
terminated), t=terminal(immediate termination)). Anything other than these four letters
will be interpreted as "t". The second operand is the text of the message to be sent to the
user. The macro processor will add line numbers and file names to the message. Note
that the message must be enclosed in quotes because it contains spaces. The 'exit
statement causes processing of the current macro instruction to terminate. Processing of
the input continues.

Now suppose we wish to enhance the not3 macro so that it will accept an arbitrary
number of inputs and outputs, as long as the number of inputs and outputs is the same.
We will call the new macro "not.m".

not.m: 'macro
'if 'count('ilist)'!='count('olist)
'error s,"not.m inputs and outputs don't match"
'exit
'endif
'int 'i
'assign 'i,0
'while 'i'<'count('ilist)
not 'ilist('i),'olist('i)
'assign 'i,'i+1
'endwhile
'endmacro

This macro illustrates several new features. First is the declaration of work variables.
The 'int statement, which may have several arguments, declares one or more variables of
type integer. Work variables may be of type integer, or of type string (declared with an
'str statement), or of type list (declared with a 'list statement). The 'assign statement can
be used to assign new values to work variables.

The 'while statement, which must be followed by an 'endwhile statement, is used to
repeatedly process a collection of statements. The operand of a 'while statement follows
the same rules as the operand of an 'if statement. The statements between the 'while
statement and its corresponding 'endwhile are processed repeatedly as long as the
condition remains true. The rule stated above, that each statement is scanned for
variables only once, must be modified for loops. Each statement in a loop is scanned
only once each time it is processed. Processing a text statement does not change the
statement, it merely causes output to be produced according to the instructions contained
in the statement. While loops may be nested arbitrarily and may be combined arbitrarily
with 'if statements.

The 'assign statement causes a value to be assigned to a variable. An 'assign
statement has two operands, the first of which is the name of the work variable whose

Chapter 5 The MACRO Processor

47

value will be changed. The second operand is an expression that, when evaluated, will
produce the new value of the variable. The assign operator "<-" may be used instead of
the 'assign statement. Thus the following two statements are equivalent.

'assign 'i,'i+1
'i<-'i+1

An expression may be a constant, such as 0, or the name of a variable such as 'i, or a
complex expression involving constants, variables, operators, and built-in functions. A
complete list of all operators and built-in functions will be found in the appendices.
Among these operators are the arithmetic operators "+", "-", "*", and "/", and the
comparison operators discussed above. The comparison operators return a 1 for true and
a 0 for false when used as arithmetic expressions.

The built-in variables 'ilist and 'olist may also be used as built-in functions. When
they are used as functions, they take one numeric operand that indicates a position in the
input (or output) list. Positions are numbered from zero. The function returns the text of
the operand in the specified position in the input (or output) list of the macro call. If the
operand is greater or equal to the number of items in the input (or output) list, the null
string is returned.

A 'while loop such as that illustrated in the previous example can be expressed more
simply as a 'for loop, as illustrated in the following example.

not.m: 'macro
'if 'count('ilist)'!='count('olist)
'error s,"not.m inputs and outputs don't match"
'exit
'endif
'int 'i
'for 'i<-0,'i'<'count('ilist),'i<-'i+1
not 'ilist('i),'olist('i)
'endfor
'endmacro

The format of a 'for statement is given below.

'for exp1,exp2,exp3
<body>
'endfor

This statement is functionally equivalent to the following.

exp1
'while exp2
<body>
exp3
'endwhile

The first expression initializes loop values, the second is the condition under which
the loop will continue to iterate, and the third expression is used to update loop variables
for the next iteration. Any of the three expressions may be parenthesized lists of
expressions, as the following "two-variable" loop illustrates.

Chapter 5 The MACRO Processor

48

'for ('i<-0,'j<-0),
 'i'<'ilim&&'j'<'jlim,
 ('i<-'i+1,;j<-'j+1)

Loops can be terminated early by use of the 'break and 'continue statements. Neither
of these statements takes any arguments. Executing the 'break statement causes the
innermost loop to be immediately terminated.

Executing the 'continue statement causes the current iteration of the innermost loop
to be immediately terminated. If the innermost loop is a 'for loop, the loop variables are
updated. If the continuation condition of the 'for or 'while loop is still true, the next
iteration of the loop begins.

5.4 Accessing The Argument List
The statement format accepted by the macro preprocessor is more flexible than that

accepted by the FHDL compiler, in that a text statement may have any number of
arguments. In particular, a macro call may have an arbitrary number of arguments. For
example, let us assume that when the "not.m" macro defined in section 3 is used, the
outputs are all of the form <name>.bar where <name> is the name of the corresponding
input. To save coding time, we could eliminate the need to specify the outputs, since the
name of the output can be deduced from the name of the input. Again, to save coding
time, we will allow the user to specify just the input list, without the parentheses. Thus
the user would code the following statement.

not.m a,b,c

This statement would produce the following output.

not a,a.bar
not b,b.bar
not c,c.bar

The definition of "not.m" would be modified as illustrated below.

not.m: 'macro
'int 'i
'assign 'i,0
'while 'i'<'count('args)
not ''i,''i#".bar"
'assign 'i,'i+1
'endwhile
'endmacro

The built-in variable 'args is a list-type variable whose value is the entire argument list
of the macro call. The individual arguments are accessed using variables of the form '0,
'1, '2, and so forth. The value of the variable '0 is the text of the first argument in the
argument list, the value of '1 is the text of the second argument, and so forth. The
variables '0 and 'ilist are identical, as are '1 and 'olist. Although all argument variables are
technically of type list, the coercion rules of the preprocessor will cause these variables to
assume the type string or the type list, as appropriate to their value and usage.

Chapter 5 The MACRO Processor

49

The operator ' is the indirection operator. When the indirection operator is applied to
an expression, the value of the expression is used as a variable name and the value of the
indirectly referenced variable is returned. The ' character is prepended to the value of the
expression, so the expression must not include the leading ' character. Although this
looks like multipass substitution, it is not.

Finally, the "#" operator is the concatenation operator. Unlike some macro
processors, the FHDL macro processor does not provide automatic concatenation of
consecutive expressions.

5.5 Generating Net Names
In the examples given so far, all net names were either supplied as operands of the

macro call, or constructed from values supplied by the macro call. In a sense, these
names are the "primary inputs and outputs" of the macro. If additional net names are
required beyond those specified as primary inputs and outputs, great care must be taken to
avoid duplicating a net name. This is not of concern when one uses an FHDL subnet,
because the FHDL circuit flattener renames these nets in such a way as to produce a
unique name each time the subnet is called. The macro preprocessor does not provide
such a mechanism, although several different mechanisms can be explicitly programmed.
This section will give examples of several different methods for providing unique net
names. Each of these examples will focus on the problem of creating a AOI32 gate out of
AND, OR, and NOT gates. The logic diagram of the AOI32 gate is given below.

I1
I2
I3

I4
I5
I6

OUT

The macro to generate gates of this type is given below.

AOI32: 'macro
'inputs 'i1,'i2,'i3,'i4,'i5
'outputs 'out
and ('i1,'i2,'i3),("tempa"#'calln)
and ('i4,'i5),("tempb"#'calln)
or (tempb#'calln,tempb#'calln),(tempc#'calln)
not tempc#'calln,'out
'endmacro

The value of the built-in variable 'calln is the number of macro calls that have been
processed so far, not counting those that were encountered during the processing of the
current macro. The variable 'calln remains constant throughout the processing of the
current macro. The value of 'calln is guaranteed to be different for each macro call.

Chapter 5 The MACRO Processor

50

This example also illustrates two different methods for specifying strings. A string
may be enclosed in quotes thus: "this is a string". If a string is enclosed in quotes it may
contain any character except the null character (zero character). If a string contains only
upper and lower case letters, digits, periods and underlines, the quotes may be omitted.

The next method of handling internal signals emulates the method used by the FHDL
circuit flattener.

AOI32: 'macro
'inputs 'i1,'i2,'i3,'i4,'i5
'outputs 'out
and ('i1,'i2,'i3),('label#.tempa)
and ('i4,'i5),('label#.tempb)
or ('label#.tempb,'label#.tempb),('label#.tempc)
not 'label#.tempc,'out
'endmacro

The the value of the built-in variable 'label is the text of the label field of the macro
call. If there is no label the value of 'label is the null string. This, of course, can cause
problems, so it might be wise to make the following change to the above macro.

AOI32: 'macro
'inputs 'i1,'i2,'i3,'i4,'i5
'outputs 'out
'str 'tlab
'if 'label'==""
'assign 'tlab,X#'calln
'else
'assign 'tlab,'label
'endif
and ('i1,'i2,'i3),('tlab#.tempa)
and ('i4,'i5),('tlab#.tempb)
or ('tlab#.tempb,'tlab#.tempb),('tlab#.tempc)
not 'tlab#.tempc,'out
'endmacro

This example illustrates the use of work variables of type string. The next example
makes use of global variables as well as string variables.

Chapter 5 The MACRO Processor

51

AOI32: 'macro
'inputs 'i1,'i2,'i3,'i4,'i5
'outputs 'out
'str 't1,'t2,'t3
'gblint 'label_number
'assign 't1,L#'label_number
'assign 't2,L#'label_number+1
'assign 't3,L#'label_number+2
'assign 'label_number,'label_number+3
and ('i1,'i2,'i3),('t1)
and ('i4,'i5),('t2)
or ('t1,'t2),('t3)
not 't3,'out
'endmacro

This example illustrates the use of global variables. The integer variable
'label_number is declared to be global. Global variables retain their values from call to
call, while local variables are initialized at the beginning of each call. Local variables are
declared using 'int, 'str, and 'list statements, while global variables are declared using
'gblint, 'gblstr, and 'gbllist statements. All macros that declare the same global variable
share access to the variable. A macro has no knowledge of undeclared global variables,
so it is permissible for one macro to declare a local variable with the same name as a
global variable declared by another macro. Global integers are initialized to zero, global
strings are initialized to the null string, and global lists are initialized to the null list.
These initializations are also done for local variables at the beginning of each call.

.The second feature illustrated by this example is the coercion between integers and
strings. When an integer variable is used as a string, it is automatically converted to a
string of decimal digits without leading zeros (unless the value is zero). Negative
numbers have a leading minus sign. A string that contains only digits can be used as a
number. It will be coerced to an integer before use. The assumed radix is 10, regardless
of leading zeros.

5.6 Function Calls
Because the FHDL macro processor provides variables, if statements and while

statements, it has the full power of a general purpose programming language. One
important feature of general purpose programming languages is the ability to define
subroutines. The ability to nest macro calls is a type of subroutine feature, but there are
times when the ability to define a function that can be used in an expression is helpful.
Any macro may be used as a function by following the macro name with a parenthesized
list of arguments. The following macro computes the "factorial" function recursively.

Chapter 5 The MACRO Processor

52

factorial: 'macro
'if '0'==0||'0'==1
'assign 'factorial,1
'else
'assign 'factorial,'0*factorial('0-1)
'endif
'endmacro

A macro that is used as a function should not contain text statements. As this
example illustrates, a macro returns a value by assigning a value to a variable whose
name is identical to the macro name. This variable, which is of type string, is a local
variable that is created at the beginning of the function call. If the macro is called
normally, the variable will not exist, therefore it is a good idea to avoid using a macro
both as a function and as an ordinary macro. If, for some reason, you absolutely must do
this, you can use the built-in variable 'callt to determine whether the macro has been
called as a function or as a normal macro. When used as a string variable, 'callt has the
value "FUNC" for a function call and the value "STMT" for a normal call. When used as
a condition it has the value true for function calls and false for normal calls. When used
in an arithmetic expression, it has the value one for function calls and zero for normal
calls.

In the example above it is not possible to replace the function name "factorial" with
an arbitrary expression. However, the "apply" operator, (@) allows you to use an
arbitrary expression as a function name. The following is an example of the "apply"
operator.

"fact"#"orial"@5

When the apply operator is evaluated, the expression on the left is evaluated and
treated as a function name. The expression on the right is evaluated and treated as the
argument list of the function. The value of the expression is the value returned by the
function.

5.7 Generating Partial FHDL Statements
The primary method for generating FHDL statements is the text statement. Each text

statement causes a complete FHDL statement to be generated. At times you may wish to
generate only a part of an FHDL statement. To illustrate, let us return to the example of
Section 3. Recall that this example generated a NOT gate for each input/output pair. Let
us modify this example to produce a subnetwork rather than generating the not gates "in
line." Because a text statement has a fixed number of operands, a single text statement
cannot be used to generate the input and output lists. However the 'disp statement can be
used to get around this problem, as the following example illustrates.

Chapter 5 The MACRO Processor

53

not.m: 'macro
'if 'count('ilist)'!='count('olist)
'error s,"not.m inputs and outputs don't match"
'exit
'endif
circuit
'int 'i
'disp "\tinputs\t"#'ilist(1)
'assign 'i,1
'while 'i'<'count('ilist)
'disp ","#'ilist('i)
'assign 'i,'i+1
'endwhile
'disp "\n\tinputs\t"#'olist(1)
'assign 'i,1
'while 'i'<'count('olist)
'disp ","#'ilist('i)
'assign 'i,'i+1
'endwhile
'disp "\n"
'assign 'i,0
'while 'i'<'count('ilist)
not 'ilist('i),'olist('i)
'assign 'i,'i+1
'endwhile
endcircuit
'endmacro

The 'disp statement is used to generate unformatted text. The statement has one
operand, which is evaluated and placed in the output. Note that opcodes, separators and
statement terminators must be explicitly specified. This example also illustrates the use
of special characters in character strings. In general, anything that is acceptable in the C
language is acceptable to the macro preprocessor, except the null character (\0). The 'disp
statement can be used to create non-FHDL output.

5.8 The else-if Construct
There are times when one must create a multi-way conditional depending on several

different conditions. One way to do this is to use nested 'if statements, that is, place a
second 'if statement in the 'else part of the first statement. This relatively common
construct can be expressed more compactly using the 'elif statement. For example,
suppose you want to generate three different types of statement, depending on whether
the variable 'x has the value 1, 2 or 3. The following sequence of statements will
accomplish this.

Chapter 5 The MACRO Processor

54

'if 'x'==1
and (a,b),c
'elif 'x'==2
or (a,b),c
'elif 'x=3
xor (a,b),c
'else
'error s,"Invalid value of x"
'endif

Note that a single 'endif statement is used to terminate the 'if construct. The 'else
portion of the statement will be executed if none of the preceding conditions are true.
The body of an 'elif portion will be executed if the corresponding condition is true and all
preceding conditions are false. The 'elif statement has a single operand which follows the
same rules as the operand of the 'if statement.

5.9 Accessing Attributes
In addition to ordinary operands, many FHDL statements have attributes which are of

the form <name>=<value> or <name>=(<value1>, ...). These types of operands are also
acceptable to the macro processor. When an attribute is used on a macro call, both the
name of the attribute and the value may be specified as expressions. In the macro
definition, the name and the value of the attribute may be accessed separately using the
'aname and 'avalue built-in functions. Suppose the following macro call has been used.

stmt5: newmac (a,b,c),(d,e,f),type=large

Within the definition of "newmac" the expression 'aname('2) will return the value
"type" and the expression 'avalue('2) will return the value "large". The expression
'aname('1) will return the null string, and the expression 'avalue('1) will return the list
(d,e,f). In general if the operand of 'aname is not of the form <name>=<value> then
'aname will return the null string. If the operand of 'avalue is not of the form
<name>=<value> then 'avalue will return the operand itself.

The 'aname and 'avalue functions may also be used to extract the components of
expressions of the form <value>-><field-name>, which are used by the ROM and PLA
preprocessors. For expressions of this form, 'aname returns the field name while 'avalue
returns the value.

5.10 Arithmetic and Logical Expressions.
As mentioned above, arithmetic expressions may contain the operators +, -, *, and /.

In addition unary plus and minus are allowed. Note that the division operator is integer
division. The operator "%" can be used to obtain remainders. Thus 5%2 would give the
value 1. Exponentiation can be performed by using the exponentiation operator, **.

The comparison operators '<, '>, '<=, '>=, '==, and '!= can be used in arithmetic
expressions. These operators return 0 for a false condition and 1 for a true. The operators
&&, || and ! may also be used in arithmetic expressions. The binary operator && gives
the value 0 if either of its operands is zero, and the value 1 otherwise. The binary

Chapter 5 The MACRO Processor

55

operator || gives the value 0 if both of its operands are zero, and the value 1 otherwise.
The unary operator ! gives the value 1 if its operand is zero and the value 0 otherwise.

All numbers and integer variables are represented as 32-bit binary numbers. There
are a number of bit-level operations that can be performed on numbers and integer
variables. The operator "&" returns the bitwise AND of its two operands, while the
operator "|" returns the bitwise OR. The unary operator "~" returns the bitwise
complement (ones complement) of its operand. The binary operator "^" returns the
bitwise EXCLUSIVE OR of its operands. The binary operators ">>" and "<<" perform
right and left shifts respectively. The left-hand operator is shifted the number of bits
specified by the right-hand operator. Examples are 'x>>2 and 'y<<3. Either operand may
be an expression.

The normal operator precedence for arithmetic operators is given below in low to high
order. Operators listed on the same line are of equal precedence. Normal precedence can
be overridden with parenthesis.

||, |, ^
&&, &
!, ~
'<, '>, '==, '<=, '>=, '!=
<<, >>
+, -
*, /, %
**
unary +, unary -

The evaluation of expressions containing the operators +, -, *, /, &, |, and ! may
sometimes give unexpected results. Because these operators are also used by other FHDL
parsers, the macro preprocessor makes an effort not to evaluate these operators. Placing
an apostrophe ahead of one of these operators will force its evaluation by the macro
processor. To prevent the evaluation of an operator, enclose the entire expression in
quotation marks.

5.11 String Handling Functions.
The macro processor provides several string handling functions. The concatenation

operator (#) mentioned above can be used to concatenate strings. In addition, the 'substr
function can be used to extract substrings of a given string. The 'substr function requires
three operands. The first is the string from which the substring is to be extracted. The
second operand is the starting position of the substring. The first character of the string is
in position zero. The third operand is the length of the substring. If the length is
specified as zero, the substring from the starting position to the end of the subject string is
returned. Some examples of this function are given in the following table.

'substr("abcdef",0,3) returns "abc"

'substr("abcdef",3,1) returns "d"

Chapter 5 The MACRO Processor

56

'substr("abcdef",2,3) returns "cde"

'substr("abcdef",2,0) returns "cdef"

A negative starting position is treated as zero. A starting position greater than or
equal to the length of the string causes the null string to be returned. A negative length is
treated as a zero. If there are not enough characters in the string to create a substring of
the specified length, the substring from the starting position to the end of the string is
returned. If the 'substr function is specified with fewer than three arguments, the omitted
arguments are treated as zeros. Any of the three arguments may be expressions.

The 'len function can be used to count the characters in a string. The 'len function
requires one argument which should be a string. It returns the number of characters in a
string. The following macro fragment can be used to process the characters of a string
one at a time.

'int 'i
'str 'char
'assign 'i,0
'while 'i'<'len('0)
'assign 'char,'substr('0,'i,1)
/*... process 'char ...*/
'assign 'i,'i+1
'endwhile

The macro preprocessor provides several "read only" built-in string variables. The
variable 'null can be used in place of "" to represent the null string. The variables 'callt
and 'label have already been discussed. In addition, the variable 'opcode contains the
opcode of the macro call. (As will be explained below, a macro can be given more than
one name, so this variable does have some use.) The value of the variable 'run can be
set from the UNIX command line. Its default value is "alogic".

5.12 List Handling Features
The macro preprocessor provides features for declaring and processing lists. A list

variable is declared as in the following example.

'list 'listvar

The 'gbllist statement can be used to declare global list variables. The built-in list
variables 'ilist, 'olist and 'args have already been discussed. A list constant is simply a list
of elements separated by commas and enclosed in parentheses. Thus to assign a three-
element list to the variable declared above, use the following statement.

'assign 'listvar,(a,bbb,qed)

The first element of a list can be accessed using the 'first function, so the function call
'first((a,b,c)) returns the string "a". The 'rest function can be used to remove the first
element of the list and return the rest. Thus 'rest((a,b,c)) returns the list (a,b), and
'rest((a,b)) returns the string "b". If the list contains only one element, 'rest will return the

Chapter 5 The MACRO Processor

57

null string. The 'select function can be used to select a particular element of a list. This
function requires two arguments, a list and a number indicating which element to select.
Elements are numbered starting with zero, so 'select((a,b,c),0) returns "a" while
'select((a,b,c),2) returns "c". If the second argument is greater or equal to the number of
elements in the list, the null string is returned.

Lists may be nested, so the following is a valid example of a list constant.

(a,b,(c,(d,dd),e),f)

Because of list nesting, the functions 'first, 'rest and 'select may return either a list or a
string. To determine whether the object returned by one of these functions is a string or a
list, use the 'atom function. The function 'atom('first((a,b,c))) will return true, while
'atom('rest((a,b,c))) will return false. As for other conditionals, if these true and false
values are used in arithmetic expressions they are treated as one and zero respectively.
You can test for the null string (or null list, which is the same thing) by using the function
'nil. The function 'nil returns true if its argument is the null string (or null list) and false
otherwise.

Lists can be constructed one element at a time by using the functions 'cons and 'consr.
These functions take two arguments, the second of which must be a list, and the first of
which must be an element to be added to the list. If the second argument is not a list, it is
coerced to a single-element list. The first argument may be an integer, a string, or another
list. The function 'cons adds the element to the beginning of the list, while the function
'consr adds the element to the end of the list.

When a list is used as a string it is coerced to a string. If it is a single-element list, the
result is the value of the single element. If it is a multi-element list, the result is a string
that begins with "(" and ends with ")" and contains the values of the elements separated
by commas. Thus the list (a,b,c) is coerced to the string "(a,b,c)". When a list is used as
an integer, it is first coerced to a string then the string is coerced to an integer. When an
integer or a string is used as a list, it is coerced to a single-element list.

5.13 Type Conversion Functions
The macro preprocessor provides automatic type conversion between lists, strings,

and integers. To summarize, numeric strings are converted to integers using a standard
(character) decimal-to-binary conversion. Non-numeric strings are converted to zeros.
Integers are converted to strings by using a standard binary-to-decimal conversion that
produces no leading zeros. Conversions between lists and the other two types are detailed
in Section 12.

Automatic type conversions are supplemented by several functions that do explicit
type conversions. Integers can be converted to fixed-length strings using the 'itos
function. The 'itos function requires two arguments, the first of which is the integer to be
converted, and the second of which is the width of the number to be produced. If the
converted string is shorter than the specified width, it is padded on the left with zeros. If
it is longer than the specified width, characters on the left are truncated.

In addition to the decimal conversions, the functions 'xtoi, 'otoi, 'btoi, 'hex, 'octal, and
'binary can be used to do conversions using the bases 16, 8, and 2. The function 'xtoi
converts a string containing digits and the letters a-f (or A-F) into an integer. The

Chapter 5 The MACRO Processor

58

characters are assumed to represent base-16 digits. Similarly the functions 'otoi and 'btoi
can be used to convert strings containing the characters 0-7 (for 'otoi) or 0-1 (for 'btoi)
into integers. The characters of the string are assumed to be octal (for 'otoi) or binary (for
'btoi) digits. The functions 'hex, 'octal, and 'binary perform integer to string conversions.
The function 'hex produces a base-16 number using the additional digits a-f, while 'octal
and 'binary produce base-8 and base-2 numbers respectively.

Integer constants may be specified in decimal, octal, or hexadecimal. Decimal
numbers other than zero begin with a non-zero digit and contain only the digits 0-9.
Octal numbers begin with a zero and contain only the digits 0-7. Hexadecimal numbers
begin with the two characters "0x" or "0X" and thereafter contain only the characters 0-9,
a-f, and A-F. Note that the operand of 'xtoi must not contain the leading "0x" or "0X"
characters. Furthermore, the operand of 'otoi need not start with a zero. Furthermore, the
function 'hex will not prepend "0x" or "0X" to its output, nor will the output of 'octal
necessarily start with a zero.

If the functions 'hex, 'octal, and 'binary are supplied with a single operand, the result
string will begin with a non-zero digit, and will be just long enough to contain all
significant digits of the converted value. If a second operand is supplied, it must be an
integer specifying the number of digits to be produced. The result string will be padded
with zeros or truncated on the left to produce a string of the specified length.

The function 'ctoi can be used to convert a character to an integer whose value is the
binary value of the character in the underlying character representation. This is ascii for
most systems, so 'ctoi(" ") usually returns the number 32. The operand of 'ctoi is a string.
All characters but the first are ignored.

5.14 Redirecting Output
Generating logic all inline is the natural mode of operation for the macro processor.

At times it may be desirable to generate a subnetwork and place references to it inline.
This complicates the data generation problem, because the subnetwork and the reference
must be generated at different places in the code, and will be separated by an
unpredictable number of statements.

The output redirection facility of the macro processor was designed to solve this
problem. The output of the macro processor is divided into three sections, the standard
output or inline section, the network section, and the subnetwork section. For the
examples given above, only the inline section is used. When output is generated the
inline section appears first, the network section second, and the subnetwork section third.
Output may be added to these sections in arbitrary order. For example consider the
following macro definition of a full adder.

Chapter 5 The MACRO Processor

59

fulladd: 'macro
'inputs 'a,'b,'c
'outputs 'sum,'carry
'gblint 'fa_done
'if 'fa_done'==0
'subnetwk

fa: circuit
inputs a,b,c
outputs sum,carry
xor (a,b),i1
xor (i1,c),sum
and (a,b),i2
and (a,c),i3
and (b,c),i4
or (i1,i2,i3),carry
endcircuit
'assign 'fa_done,1
'endif
'stdout

'label: fa ('a,'b,'c),('sum,'carry)
'endmacro

The statement 'subnetwk changes the current output section to be the subnetwork
section. The statement 'stdout changes the current output section to the inline section.
The 'network statement changes the current output section to the network section. In this
example, the definition of the circuit "fa" will appear after the all calls to "fa".

The output redirection feature also allows several circuits to be constructed
simultaneously in piecemeal fashion. This is done by creating named subnetwork and
network sections. The following example demonstrates the use of named subnetwork
sections.

'exam: 'macro
'subnetwk a

a: circuit
'subnetwk b

b: circuit
'subnetwk a
input aa
output aaa
not aa,aaa
endcircuit
'subnetwk b
input bb
output bbb
not bb,bbb
endcircuit
'stdout
'endmacro

Chapter 5 The MACRO Processor

60

In this example, two named subnetwork sections, a, and b are defined. Named
subnetwork sections appear in the order defined in the subnetwork section of the output.
If the unnamed subnetwork section is used in conjunction with named subnetwork
sections, it is treated as a named subnetwork section whose name is the null string. The
first 'subnetwk statement encountered that contains a particular name defines a named
subnetwork section. All other subnetwork sections containing the same name add to the
named subnetwork section. The name may be a complex expression. Named network
sections are handled similarly.

5.15 Creating Macro Libraries
Macros may appear inline with the text of a circuit, or they may be placed in macro

libraries, and accessed automatically. A macro library is a directory whose files contain
macro definitions. Each macro must be a separate file, and the file name must exactly
match the name of the macro. A macro may be given more than one name by using the
UNIX "ln" command to link macro names.

A macro library is often used to define a coordinated set of macros for a particular
application. When this is done, it is sometimes necessary to have special initialization
and termination macros. One way to use such macros is to force all users to place the
initialization and termination macros at appropriate points in the text of their circuits.
Another way is to explicitly define initialization and termination macros in the library.
The initialization macro must be named "$START" and the termination macro must be
named "$END". If an initialization macro is defined, it will be invoked before the first
statement of the user's circuit is interpreted. If a termination macro is defined it will be
invoked after the last statement of the user's circuit is interpreted.

Several macro libraries may be used in a single run. It is permissible for the same
macro-name to appear in several libraries. In this case the form of the UNIX command
that invokes the preprocessor determines which library to use for a particular macro. See
section 18 for details.

5.16 Including Text
It may be necessary to define a large number of global variables, that are shared by a

number of macro definitions. It may also be necessary to replicate other text in each
macro. Explicit replication of text in each macro makes that body of text next to
impossible to change. The include feature of the macro processor can be used to
circumvent this problem. The following example illustrates the use of this feature.

exam: 'macro
'include global_defs
...
'endmacro

This include statement causes the file "global_defs" from the macro library to be
included in the text of the macro "exam". The file name may not be an expression. It
must be a string either with or without quotes. If the name is not found in any macro
library, it will be treated as an ordinary file name. If the file can be found using the

Peter M. Maurer
This method does not work for WINFHDL. The method for creating macro libraries under windows is still under development, but will be ready by the end of 1996.

Chapter 5 The MACRO Processor

61

ordinary rules for locating files, (i.e. full path name, relative to current directory) that file
will be included in the text, otherwise a "nonexistent file" message will be issued.

The 'include statement may be nested arbitrarily, but beware of circular references.
Circular references always cause a non-terminating expansion of the text. This is because
the 'include statement is executed as the text is read from the source files, not when the
code is interpreted. Every 'include statement is executed unconditionally regardless of
where in appears in the text. Thus the following example will cause two include
statements to be executed.

exam: 'macro
'if 'run'=='abc'
'include abc
'else
'include xyz
'endif
'endmacro

For convenience, all include files may be gathered into an include directory which
will be treated as a macro library by the preprocessor. It is important that the names of
include files and macros be distinct. See section 18 for more information.

5.17 A Word on Format
.All portions of a statement may be specified as expressions. The examples given in

preceding sections show, for the most part, constants in the label field and opcode field.
In fact, both of these fields may be specified as complex expressions. Preprocessor
statements, however, can be specified only with constant opcodes. An expression cannot
be used to generate a preprocessor keyword.

Statements may be assigned more than one label, as illustrated in the following
examples.

a:
b:
c: 'macro

a:;b:;c: 'macro

When more than one label is used on a macro call, the 'label variable contains the
value of the first label. The built-in list variable 'llist can be used to access the entire list
of variables attached to the macro call. Also, the built-in function of the same name can
be used to access various portions of the label list.

Macros may be assigned more than one name by placing several labels on the 'macro
statement, or by placing additional names in the operand field of the 'macro statement. (If
only one name is used, it may appear either in the label field or in the operand field.)
When a macro is given more than one name, any of the assigned names may be used as an
opcode to invoke the macro. The actual name used can be determined in the macro
definition by using the 'opcode variable. If "function call" macros are given more than
one name, the 'opcode variable must be used to return the function value. This is because
the name of the "return" variable always matches the name used to invoke the function. If

Chapter 5 The MACRO Processor

62

one of the macro's other names is used, an "undefined variable" message will be issued.
The precise method for doing this is explained below.

The six statements used to define variables may have label fields. If labels are used
on these statements, the labels are taken to be the names of additional variables to be
defined. Thus the following statement defines six integer variables.

a:
b:
c: 'int d,e,f

When a label of a 'macro statement or one of the six variable-defining statements
contains commas, the label is treated as a list of names. Thus the following statement
assigns three names to a macro.

x,y,z: 'macro

And the following statement defines three integer variables.

a,b: 'int c

The previous examples also illustrate another syntactic principle of the macro
processor. The expression 'x means "the value of x". The expression x means "the
variable x". Although it is less confusing to use the form 'x everywhere, it is not
syntactically correct to do so. HOWEVER, the macro processor permits the syntactically
incorrect form to be used in variable definitions and in assignments. The syntactically
correct way to increment the value of the variable 'i is as follows.

'assign i,'i+1

However, the preprocessor accepts the following statement as incrementing the value
of 'i.

'assign 'i,'i+1

The syntactically correct meaning of this statement is "obtain the value of i and use
the value as the name of the variable to be assigned." Since indirect assignment tends to
be quite rare, this is taken to be a miswritten direct assignment. It is actually good
practice to use the syntactically incorrect forms, since this will tend to lessen the
frequency with which you forget to use the leading ' mark. When it is necessary to do an
indirect assignment this can be done by enclosing the name of the variable in parentheses
as the following statement illustrates.

'assign ('indvar),'i+1

Anything other than a user defined variable as the first operand of an 'assign
statement will cause the syntactically correct rules to be applied. Thus, returning a value
from a function-call macro with more than one name can be done using a statement
similar to the following.

'assign 'opcode,"return value"

In the examples given above, the error message on the 'error statement was specified
as a single string. In fact an arbitrary expression may be used, as illustrated below.

Chapter 5 The MACRO Processor

63

'error s,"input count="#'count('ilist)#" should be 3"

The severity code may also be supplied as a complex expression. Only the first
character of the operand is significant. Therefore a severity code of "severe" or
"superfluous" is the same as "s".

Comments may be included in macros. There are two types of comment statements.
If the opcode "comment" is used (without the leading ' mark) the comments will be
included in the generated text. If the opcode 'comment is used, the comments will not
appear in the generated text. The first type of comments are used to include
informational messages in the generated text. The second type are used to comment the
macro itself. In either case the body of the comment may contain any printable character.
A semicolon or a newline character marks the end of a comment.

Within a macro the order of variable definition statements is irrelevant. The first use
of a variable may precede its definition. Similarly the first use of a macro may precede
the definition of the macro. It is necessary, however, for all macro definitions to precede
all non-macro text in an input file. The non-macro text in an input file is treated as an
unnamed macro, so preprocessor statements may appear in the non-macro text. In
particular 'include statements may appear in non-macro text.

5.18 Executing the Preprocessor
The preprocessor is executed using the "alogic" command. The simplest form of this

command is to use it as a filter for FHDL input, as the following illustrates. (The alogic
command is executed automatically if the fhdl command with the "-n" option is used.)

alogic input.ckt | fhdl >input.c

A macro library can also be used with this form as the following command illustrates.

alogic -m maclib input.ckt | fhdl >input.c

The name of the macro library is "maclib". File names for both macro libraries and
input files follow the usual UNIX rules for file name formation. The flag "-m" must
precede the name of each macro library. The "-m" flag must be separated from the macro
library name by one or more spaces or tabs. If more than one macro library is specified,
and the same macro is defined in more than one library, the definition encountered last
takes precedence. This is also true for the initialization and termination macros. Only the
last encountered initialization and termination macros will be executed. The following is
a command that specifies two macro libraries "mac1" and "mac2" and an include
directory "include1".

alogic -m mac1 -m mac2 -m include1 input.ckt | fhdl >input.c

In most cases, complex applications such as this will have shell files that supply the
library names. File names without the preceding "-m" flag are input files. There may be
several input files specified as in the following example.

alogic -m mac1 input1.ckt input2.ckt input3.ckt | fhdl >input.c

Input files are processed one at a time in the order specified. After the processing of a
file is complete, the macros defined in the file are retained and made available to all
succeeding files. This may cause problems if several files define the same macro (in this

Peter M. Maurer
These instructions apply to UNIX only. For the use of the MACRO processor with WINFHDL, see the WINFHDL Help File

Chapter 5 The MACRO Processor

64

case, break into several runs). The main use of this feature is to allow all non-library
macros to be placed in a header file that precedes the circuit file on the command line.

A file name of "-" (a single dash preceded and followed by one or more spaces or
tabs) indicates the standard input. The standard input is read (possibly several times)
whenever the file "-" is processed.

The value of the variable 'run may be set using the "-r" flag on the command line.
The "-r" flag must be preceded and followed by one or more spaces or tabs. The
(command line) argument following the "-r" flag is assigned to the 'run variable. There
must be only one "-r" flag on the command line. All input files in a particular run share
the same value of the 'run variable. The following is an example of setting the 'run
variable.

alogic -m mlib -r old input.ckt | fhdl >input.c

Normally the output of the macro preprocessor is directed to "stdout". (Error
messages are directed to "stderr".) This output can be redirected in the usual fashion, or it
can be explicitly directed to an output file by using the "-o" flag on the command line.
The "-o" flag must be preceded and followed by one or more spaces or tabs. The output
of the preprocessor will be placed in the file name following the "-o" flag. There may be
at most one "-o" flag on the command line. If several output files are needed, break into
several runs.

Chapter 5 The MACRO Processor

65

5.19 Macro Statement Summary

5.19.1 Operand-Type Designators

Designator Meaning
- none allowed
A Arbitrary
E Expression
F File Name
L i,w,s, or t
V Variable Name

VL A list of variable names separated by commas
X an expression or omitted

5.19.2 Statements

Opcode Operands Function
'assign V,E Evaluate E and assign to V
'break - Terminate innermost loop
comment A Pass comment through to output
'comment A Comment disappears from output
'continue - Terminate the current iteration of the innermost loop
'disp E Output a portion of an FHDL statement
'elif E Introduce an alternative condition into an IF statement
'else - Introduce the ELSE portion of an IF statement
'endfor - End of a 'for loop
'endif - End of an IF statement
'endmacro - End of a macro definition
'endwhile - End of a 'while loop
'error L,E Print an error message E of severity L
'eval E Evaluate the expression E
'exit - Terminate evaluation of the current macro
<expression> - Evaluate the expression
'for E,E,E Begin a for loop. Operands are init, cond, incr
'gblint VL Define global integer variables
'gbllist VL Define global list variables
'gblstr VL Define global string variables
'if E Begin an if statement with condition E
'include F Include the file named F in the current macro or input file
'input VL Define input-signal operand names
'int VL Define local integer variables
'list VL Define local list variables

Chapter 5 The MACRO Processor

66

Opcode Operands Function
'macro VL Begin a macro definition
'network X Begin or resume a (possibly named) network section
'output VL Define output-signal operand names
'stdout X Begin or resume a (possibly named) standard-output section
'str VL Define local string variables
'subnetwk X Begin or resume a (possibly named) subnetwork section
'while E Begin a while loop with continuation condition E

Chapter 5 The MACRO Processor

67

5.20 Macro Function and Builtin Variable
Summary

5.20.1 Operand-Type Designators

Designator Meaning
- none, this is a variable
A Macro Argument, or a part thereof
N Numeric Expression
L List Expression
S String Expression
C Single-Character String Expression
E Arbitrary Expression

5.20.2 Functions and Variables

Opcode Operands Function
'aname A Returns the name for expressions of the form <name>=<value> or

<value>-><name>.
'args - Returns a list containing all macro arguments for the current call.
'args N Returns the Nth argument of the current macro call.
'atom E Returns 0 if E is a list, 1 otherwise.
'avalue A Returns the value for expressions of the form <name>=<value> or

<value>-><name>.
'binary N Converts N to a binary string and returns the result.
'binary N,N Converts arg1 to a fixed-length binary string (arg2) and returns

the result.
'btoi S Treats S as a string of binary digits, and converts it to an integer.
'calln - The sequential number of the macro call that invoked the current

macro.
'callt - Type of current macro call. True for functions, false for

statements. Strings "STMT" or "FUNC" if evaluated as a string.
'cons E,L Append E to the head of the list L, and return the result.
'consr E,L Append E to the tail of the list L, and return the result.
'count L Count the elements of list L and return the result.
'ctoi C Return the integer value in the underlying character set of the

character C.
'first L Return the first element of list L.
'hex N Convert the number N to a string of hexadecimal digits.
'hex N,N Convert the first argument to a fixed-length string of hexadecimal

digits, length equal to second argument.
'ilist - For FHDL gate-type macro calls, return the list of input names.

Chapter 5 The MACRO Processor

68

Opcode Operands Function
'ilist N For FHDL gate-type macro calls, return the Nth input name.
'itos N,N Convert the first argument to a string of decimal digits whose

length is equal to the second argument. (Automatic coercion
takes care of variable-length strings.).

'label - The label of the current macro call.
'len S Returns the length of the string argument.
'llist - Returns the list of labels for the current macro call.
'llist N Returns the Nth label of the current macro call.
'nil L Returns 1 if the argument is the null list, 0 otherwise.
'null - The null string or the null list.
'octal N Converts N to a string of octal digits.
'octal N,N Converts the first argument to a fixed-length string of octal digits.

The length is equal to the second argument.
'olist - For FHDL gate-type macro calls, return the list of output names.
'olist N For FHDL gate-type macro calls, return the Nth output name
'opcode - The opcode of the current macro call.
'otoi S Treats S as a string of octal digits and returns the integer value.
'rest L Deletes the first element from a list and returns the rest. For

single element lists, returns 'null.
'run - The value of the -r option from the alogic command line. "alogic"

is default.
'select L,N Select the Nth element from list L.
'substr S,N,N Return the substring of S that starts at the character denoted by the

first argument (0 is the first char of S) and spans a number of
characters equal to the second argument.

'substr S,N Return the substring of S that starts at the character denoted by the
first argument (0 is the first char of S) and extends through the
end of the string.

'xtoi S Treat S as a string of hexadecimal digits, and return the integer
equivalent.

Chapter 5 The MACRO Processor

69

5.21 Macro Operator Summary

5.21.1 Operand-Type Designators

Designator Meaning
N Numeric Expression
L List Expression
S String Expression
E Arbitrary Expression
V A Variable Name

5.21.2 Operands

Opcode Operands Function
@ S@L Evaluate the first argument as a string, and the second as a list.

Treat the string obtained from the first argument as a function
name and apply it to the second argument treated as an argument
list. Does not work with builtin functions.

, E,E Creates a list containing both expressions. May be used to create
multi-element lists.

<- V<-E Evaluates E and assigns the value to V.
<- S<-E Evaluates E and S, and assigns the value of E to the variable

whose name matches the value of S.
= E=E Outputs as "E=E". If used in a macro argument, may be the

subject of 'aname and 'avalue functions.
-> E->E Outputs as "E->E". If used in a macro argument, may be the

subject of 'aname and 'avalue functions.
S#S Concatenates the two strings.

&& N&&N Logical AND of the arguments treating zero as false non-zero as
true.

& N&N Bitwise AND of the two (32-bit integer) arguments.
& E&E Outputs as "E&E" if one argument is not numeric.
'& E'&E Bitwise AND of the two (32-bit integer) arguments, regardless of

type.
|| N||N Logical OR of the arguments treating zero as false non-zero as

true.
| N|N Bitwise OR of the two (32-bit integer) arguments.
| E&E Outputs as "E|E" if one argument is not numeric.
'| E'|E Bitwise OR of the two (32-bit integer) arguments, regardless of

type.
^ E^|E Bitwise EXCLUSIVE OR of the two (32-bit integer) arguments,

regardless of type.

Chapter 5 The MACRO Processor

70

Opcode Operands Function
! !N Logical NOT of the argument, treating zero as false non-zero as

true.
~ ~N Bitwise NOT of the (32-bit integer) arguments. Ones

Complement.
< E<E Outputs as "E<E"
> E>E Outputs as "E>E"

== E==E Outputs as "E==E"
<= E<=E Outputs as "E<=E"
>= E>=E Outputs as "E>=E"
!= E!=E Outputs as "E!=E"
'< E'<E Less than comparison. Returns 1 for true, 0 for false.
'> E'>E Greater than comparison. Returns 1 for true, 0 for false.

'== E'==E Equal to comparison. Returns 1 for true, 0 for false.
'<= E'<=E Less than or equal to comparison. Returns 1 for true, 0 for false.
'>= E'>=E Greater than or equal to comparison. Returns 1 for true, 0 for

false.
'!= E'!=E Not equal to comparison. Returns 1 for true, 0 for false.

$LT E$LTE Same as '<.
$GT E$GTE Same as '>.
$EQ E$EQE Same as '==.
$LE E$LEE Same as '<=.
$GE E$GEE Same as '>=.
$NE E$NEE Same as '!=.
<< N<<N Shifts the first (32-bit integer) argument left the number of bits

indicated by the second argument.
>> N>>N Shifts the first (32-bit integer) argument right the number of bits

indicated by the second argument.
+ N+N Returns the sum of its arguments.
+ E+E Outputs as "E+E" if one argument is not numeric.
'+ N'+N Returns the sum of its arguments, regardless of type.
- N-N Returns the difference of its arguments.
- E-E Outputs as "E-E" if one argument is not numeric.
'- N'-N Returns the difference of its arguments, regardless of type.
* N*N Returns the product of its arguments.
* E*E Outputs as "E*E" if one argument is not numeric.
'* N'*N Returns the product of its arguments, regardless of type.
/ N/N Returns the quotient of its arguments.
/ E/E Outputs as "E/E" if one argument is not numeric.
'/ N'/N Returns the quotient of its arguments, regardless of type.
** N**N Raises the first argument to the power designated by the second

argument. This is done iteratively.
unary + +N Returns N.

Chapter 5 The MACRO Processor

71

Opcode Operands Function
unary + +E Outputs as "+E" if the argument is not numeric.
unary '+ '+E Returns E regardless of type.
unary - -N Returns the negation of N. Two's Complement.
unary - -E Outputs as "-E" if the argument is not numeric.
unary '- '-E Returns the negation of E regardless of type.

' 'E Evaluates its argument, and treats the result as a variable name,
and then returns the value of the named variable. If the
expression is numeric and evaluates to n, the value of the nth
argument of the current macro call is returned.

Chapter 5 The MACRO Processor

72

5.22 Macro Processor Keywords
'aname
'args
'assign
'atom
'avalue
'binary
'break
'btoi
'calln
'callt
comment
'comment
'cons
'consr
'continue
'count
'ctoi
'disp
'elif
'else
'endfor
'endif
'endmacro
'endwhile
'error
'eval
'exit
'first
'for
'gblint
'gbllist
'gblstr

'hex
'if
'ilist
'include
'input
'int
'itos
'label
'len
'list
'llist
'macro
'network
'nil
'null
'octal
'olist
'opcode
'options (reserved for future use)
'otoi
'output
'rest
'run
'select
'stdout
'str
'subnetwk
'substr
'while
'xtoi

Chapter 5 The MACRO Processor

73

5.23 Macro Operator Precedence
All preprocessor operators are listed from lowest priority to highest. If more than one

operator is listed on a line, all operators on the same line have equal priority. The first
column indicates the associativity of the operator.

Precedence Associativity Operator
Low Right @

Right , (Yes, comma is treated as an operator)
Right <-
Left = ->
Left #
Left || | ^ '|
Left && & '&
Right ! ~
Non assoc. < > == <= >= !=
Non assoc. '< '> '== '<= '>= '!= $LT $GT $EQ $LE $GE $NE
Non assoc. << >>
Left + - '+ '-
Left * / % '* '/
Right **
Right unary + unary - unary '+ unary '-

High Right ' (indirection)

75

CHAPTER 6

The Test Driver Language

The FHDL Test Driver Language is designed to simplify the process of creating and
running functional tests. It is capable of running tests, suppressing all but the
"interesting" results, checking for errors, generating the same vector repeatedly until a
condition becomes true, and generating error messages. Driver-language statements
interact dynamically with the simulation to produce results that cannot be achieved in a
static vector environment.

6.1 Introduction
The FHDL Test-Driver Language is intended to simplify the testing of circuits

specified using the Florida Hardware Design Language. The features described in this
chapter are automatically provided when the fhdl command with the "-n" option is used.
These features are not available otherwise. The Driver language can be used to specify
the format of tests, and the manner in which tests are applied to the circuit. Feedback
from the circuit under test can be used to control the testing process. Figure 1 illustrates
the relationship between the driver created using the FHDL driver language, and the
circuit under test.

Peter M. Maurer
The Windows version of this component is still under development.

Chapter 6 The Test Driver Language

76

Disk
Files

DDRRIIVVEERR

CCooddee

Figure 1. The Relationship of the Driver and the CUT.

The Driver can be used to save time in generating test vectors, and can be used to
compare expected results with the real results and report discrepancies.

6.2 The Format of the Language
The format of driver language statements is given below. The format is similar to that

of the other FHDL languages.

<label>: <opcode> <operands>

Each statement contains a label field, and op-code field and an operands field. The
label field begins at the first character of a statement and ends with a colon. A label may
contain any combination of letters, digits, underlines and periods. The label field is
separated from the op-code field by one or more spaces or tabs. If the label is omitted,
the colon must also be omitted and the statement must begin with a space or a tab to
signify that the label is omitted. Labels are ignored on most driver language statements.
The opcode field must be separated from the operands field by one or more spaces or
tabs. The operands field is optional for some statements, but the op-code is required for
all statements. A statement is terminated by a carriage return or a semicolon. If a line
ends in a comma, the statement is assumed to be continued on the next line.

The driver provides local variables and allows the nets of the Circuit Under Test
(CUT) to be accessed directly. Variable names and net names consist of an arbitrary
string of letters, digits, underlines and periods. Case is significant for variable names and
net names so Abc, ABc, and abC are three different variable or net names. Case is not
significant for driver-language keywords, so the keywords Driver, DRIVER, and DrIvEr
are all the same.

A set of driver specifications must begin with a "driver" statement and end with an
"enddriver" statement. These statements must be included with the rest of your FHDL

Chapter 6 The Test Driver Language

77

specifications. At the present time, only one set of driver statements is allowed in any
FHDL specification. Figure 2 illustrates the form of the driver specifications.

main: driver
<driver statements>
enddriver

6.3 Expressions
Most driver statement operands may be expressions. Expressions are formed just as

they are in most programming languages. The simplest expressions are variable names,
net names, and numbers. Numbers may be specified in decimal, octal, or hexadecimal.
Decimal numbers begin with a non-zero digit and contain only the digits 0-9. Octal
numbers begin with a zero and contain only the digits 0-7. Hexadecimal numbers begin
with the characters 0x or 0X and contain only the digits 0-9 and a-f (A-F may also be
used).

The operators +, -, *, and / may be used to perform addition, subtraction,
multiplication and division. Unary + and - may also be used. (Warning though, all driver
variables and all nets are treated as unsigned integers.)

The operator "->" may be used to assign a value to a variable or to a net. The form of
this expression is <value>-><variable> or <value>-><net>. The assignment expression
has a value equal to the value assigned to the variable or net.

The operators ==, !=, <, >, <=, and >= may be used to do equal, not equal, less than,
greater than, less than or equal to, and greater than or equal to comparisons. Thus to
compare a variable xyz equal to 5, use the expression xyz==5. A comparison operator
will produce the value 1 if the comparison is true and 0 if the comparison is false. This
value may be used, in an arbitrary way, in other expressions. The operator "==" may be
abbreviated as "=".

The operators &, |, and ! (the AND, OR, and NOT functions) may be used to create
complex conditions. These operators treat any non-zero value as true and zero as false.
They produce 1 for a true result and 0 for a false result. This result may be used
arbitrarily in other expressions.

A set of expressions may be evaluated by separating them with commas as in the
following.

0x64->a,2->b,3->c

If an expression of this form is used in another expression, its value is the value of the
last expression.

Operator priority is given from low to high in the following table. The table also
indicates whether a particular operator is left-associative, right-associative, or non-
associative. Operators of equal precedence are listed on the same line.

Prededence Associativity Operator
Low right , (comma)

left ->
right !
left |

Chapter 6 The Test Driver Language

78

left &
non assoc. == != < > <= >=
right Unary + Unary -
left + -

High left * /

6.4 Statements

6.4.1 The variable statement
The "variable" statement is used to declare variables. The following is an example.

variable a,b,abc,z,xyz

Variable statements may appear anywhere in the set of specifications. There is no
limit to the number of variables that may be declared. Variable names are arbitrary
strings of letters, digits, underlines and periods. Case is significant. Any variable name
that is used but not declared is assumed to be a net of the circuit under test. Thus
undeclared variables will normally be reported as non-existent nets. If a variable has the
same name as a net in the circuit under test, the variable name overrides the net name.
There is no limit on the length of variable names. All variables are treated as unsigned
32-bit integers.

6.4.2 The go statement
The "go" statement causes the functional simulator to be executed. One set of inputs

is supplied and one set of outputs is obtained. For clocked circuits, the "go" statement
causes the circuit to be executed for one phase of the clock. The format of the "go"
statement is given below.

go

To execute the functional simulator for more than one phase, or to execute repeatedly
with the same set of inputs, a numeric operand may be placed on the go statement as
illustrated below. This operand may be an expression.

go 30
go abc+2

The "go" statement may cause the values of certain variables and nets to be updated
automatically. See the "on," "clock," and "count" statements.

6.4.3 The expression statement
The expression statement is used to assign values to variables and nets. An arbitrary

expression is used as the op-code of the statement. In order to be meaningful, the
expression should contain at least one assignment operator. The following illustrates the
use of assignments to create a test vector for a circuit.

Chapter 6 The Test Driver Language

79

inputa->1,inputb->0,clk1->0
go
clk2->1
go

The names "inputa" and "inputb" are assumed to be primary inputs of the circuit
under test. Note that the values of these inputs is identical for both "go" statements. The
SET statement is a variation of the expression statement. This statement is illustrated
below.

set inputa->1,inputb->0,clk1->0
go
set clk2->1
go

6.4.4 The read statements
The read statement is used to read a vector of values from an external file and assign

the values to a set of variables or nets. The first operand of a read statement must be a
number (or an expression) that specifies the file to be read. The following is an example
of a read statement.

read 0,inputa,inputb,xyz

Each vector consists of a number of values separated by commas and terminated by
an end of line character. If the vector contains more values than there are variables (or
nets) on the read statement, the extra values are discarded. If there are fewer values than
variable names (or net names) the extra variables (or nets) will be assigned the value zero.
The values must be specified in hexadecimal without the leading 0x or 0X.

The file number must be (or evaluate to) a number between zero and ten inclusive. A
file number of zero causes the standard input to be read. (Recall that a set of FHDL
specifications compiles into a UNIX program. The zero file refers to the standard input
of that program, which defaults to the terminal.) File numbers between one and ten refer
to the arguments of the command used to invoke the simulator. A file number of 1 causes
the first argument of the command to be treated as a file name, and the program reads the
input vector from that file.

If specifying input values in hexadecimal is inconvenient, the "readd" statement can
be used to read decimal, octal, or hexadecimal data. The format of the "readd" statement
is identical to that of the "read" statement. When the "readd" statement is used, input
values are assumed to be in decimal if they begin with a non-zero digit, octal if they begin
with zero, and hexadecimal if they begin with the characters 0x or 0X.

The "get" command can be used to abbreviate reads from the standard input. The
following two commands are equivalent.

read 0,inputa,inputb,xyz
get inputa,inputb,xyz

The command "getd" can be used to read decimal, octal, and hexadecimal data from
the standard input. Its format is identical to that of the "get" statement.

Chapter 6 The Test Driver Language

80

The expression "eof(<file number>)" can be used to test a file for end-of-file. The
expression eof(0) returns 1 if file zero (stdin) is at end of file, and zero otherwise.

6.4.5 The write statements
The write statement is used to display the current values of variables and nets. For

example, the following statement causes the current value of the net "outputa" and the
variable "xyz" to be displayed on the standard output.

write 0,xyz,outputa

The first operand of a write statement is a file number. Just as in a read statement, the
file number must be or evaluate to a number from zero through 10 inclusive. The number
zero is used to specify the standard output of the UNIX command used to invoke the
simulator. The numbers from 1 through 10 refer to the operands of the UNIX command
used to invoke the simulator. If the number 5, say, is used as a file number, the fifth
operand of the command will be treated as a file name. The file will be opened for output
and the data from the write command will be written on the file.

Each write statement produces one line of output. The values of the specified nets
and variables are written in hexadecimal with no leading or trailing spaces, and separated
by commas. All hexadecimal values for a particular net or variable will have the same
number of digits, with leading zeros if necessary. Variations of the write command can
be used to specify data in different formats.

The writed statement can be used to write values in decimal rather than hexadecimal.
The format of the writed statement is identical to that of the write statement. When data
is written in decimal, leading zeros are omitted. In all other respects, the output format is
identical to that of the write statement.

The writex statement can be used to include the variable or net name in the output.
When writex is used, the variable or net name is prepended to the the value, and separated
from the value by an equal sign. The writex statement outputs values in hexadecimal,
with leading zeros to maintain a constant width.

The writexd statement can be used to output named data in decimal. The decimal
output will not contain leading zeros.

The display statement can be used as shorthand for writing named hexadecimal data
on the standard output. The following two statements are identical.

write 0,xyz,outputa
display xyz,outputa

The displayd statement can be used to display named decimal data on the standard
output. It is equivalent to using a writexd statement with file zero.

6.4.6 The monitor statements
The monitor statement can be used to cause a write statement to be executed

following every "go" statement. It is assumed that the output caused by a monitor
statement will be formatted by a post processing program of the user's choice. The
monitor statement is executable, so monitoring can be turned on or off at various points
in the simulation. An example of a monitor statement is given below.

monitor 0,xyz,outputa

Chapter 6 The Test Driver Language

81

When monitoring is active, all monitor statements for a particular file number will be
gathered into a single "write" statement that is executed after each go statement. The file
to which monitoring is directed will contain one line of output per go statement,
regardless of how many monitor statements have been used to specify the variables or
nets to be monitored. Furthermore, every time a monitor statement is executed, a list of
variable names is written to the specified file. This list of names identifies all variables
that are currently being monitored on the file, and the order in which their values appear.
The variable names have two leading characters prepended to specify the format of the
monitored value. The first character is an x or a blank to specify whether the monitored
value is printed with or without a name respectively. The second character is a d or a
blank to specify whether the value is printed in decimal or hexadecimal respectively. The
name will be followed by a comma which will in turn be followed by an integer that
specifies the width of the variable being monitored. This number may vary for signals, it
will be 32 for all variables defined in the driver description. A comma separates the
following variable name from the width of the previous variable. These lines allow a post
processing program to determine the names of the variables or nets being monitored, their
formats, and their positions in the output. The lines containing variable names will begin
with the characters "T," (the capital letter T followed by a comma) to distinguish them
from lines containing data. Similarly, the lines containing data will begin with the
characters "D,", the capital letter D followed by a comma. Any messages that are written
to a monitor file will begin with an asterisk ("*") to distinguish them from data lines.

The monitord statement can be used to cause a "writed" statement to be executed after
every go instead of a "write" statement. Similarly, the monitorx and monitorxd
statements can be used to cause writex and writexd statements to be executed. Only one
line of output will be produced per go statement per file, regardless of whether mixed
types of monitor statements have been used to initiate output. Execution of monitord,
monitorx, and monitorxd statements also causes the line containing the variable names to
be output.

The demonitor statement can be used to turn off the monitoring of a variable or a net.
The following statement causes monitoring to be turned off for the net outputb, and the
variable xyz.

demonitor xyz,outputb

The demonitor statement will cause lists of variable names to be written to any
affected file, making the new monitoring status available to a post-processing program.

If a monitor monitorx, monitord, or monitorxd statement is executed for a variable or
net that is already being monitored, the variable or net is automatically demonitored
before the monitor statement is executed. A variable or net can be monitored to at most
one file at a time.

6.4.7 The if statement
The if statement can be used to conditionally execute statements. The following is an

example of an if construct.

Chapter 6 The Test Driver Language

82

if a==b
display a,b
c->d
monitor d

endif

In this example, the statements between the if and endif statements will be executed
only if a is equal to b. The operand of an if statement may be an arbitrary expression. If
the expression evaluates to non-zero, it is considered to be a true result, and the
statements between the if and endif statements will be executed. If the expression
evaluates to zero, it is considered to be a false result and the statements will be skipped.
Every if statement must have a corresponding endif statement. If statements may be
nested arbitrarily.

The else statement can be used to cause statements to be executed when a condition is
false. The following example illustrates. if a==b

display a,b
c->d
monitor d

else
display c,d
x->y
monitor z

endif

In this example a and b will be displayed if a and b are equal, and c and d will be
displayed otherwise.

The elif statement can be used to construct multi-way conditionals. It can be used to
simplify the construction of else-if conditionals. The following two constructs will
produce the same results.

if a==b
display a,b

else
if a==c

display a,c
else

display x,y
endif

endif

if a==b
display a,b

elif a==c
display a,c

else
display x,y

endif

Chapter 6 The Test Driver Language

83

Any number of elif statements may be included in a single if construct. The final else
statement is optional. A single endif statement terminates the entire construct.

6.4.8 The while statement
The while statement can be used to execute statements repeatedly. The following is

an example.

while done==0
0->clk
go
1->clk
go

endwhile

In this example, a feedback symbol "done" is used to control the application of
vectors to the simulator. Assume that clk is a clock input to the circuit under test. This
set of statements would be suitable for driving a microprogrammed arithmetic circuit
such as a divider or a multiplier.

Every while statement must have a corresponding endwhile. The statements between
the while and endwhile are executed until the specified condition becomes false (equal to
zero). It is possible for the body of the loop to be executed zero times. While statements
may be nested arbitrarily both with other while statements and with if statements.

6.4.9 The for statement
The for statement is used to execute statements repeatedly, and at the same time

specify the values of loop variables. The following are two examples.

for 1->a,a<10,a+1->a
go

endfor

for (1->a,b->0),a<10,(a+1->a,b+5->b)
go

endfor

The first example illustrates the use of a single loop variable, while the second
illustrates the use of two loop variables. Both of these "loop variables" are assumed to be
input nets of the circuit under test. The format of a "for" construct is given below.

for <init>,<test>,<incr>
<statement list>

endfor

The expressions <init>, <test>, and <incr> are three arbitrary expressions separated
by commas. If any of these expressions contain commas, they must be enclosed in
parenthesis. The expression <incr> is executed once before the loop begins. The <test>
is executed prior to each iteration of the loop and if it is false (equal to zero), the loop
terminates. The <incr> is executed prior to every iteration of the loop except the first, but
only if the <test> expression is true (non zero). It is possible for the statement list to be

Chapter 6 The Test Driver Language

84

executed zero times. For statements may be nested arbitrarily with other for statements,
while statements, and if statements.

6.4.10 Break and continue statements
Early termination of a loop may be accomplished using the break statement. This

statement terminates the innermost loop in which it is contained. If it is executed inside
of a for loop, the loop variables will retain the values they had when the break statement
was executed.

The continue statement terminates only the current iteration of the innermost loop.
Execution of the loop continues with the next iteration (if any). If the continue statement
is executed inside of a for loop, the next iteration begins with the execution of the <incr>
expression.

The following is an example.

if a==b
break

else
continue

endif

6.4.11 The message statement
The message statement can be used to include arbitrary messages in the output of the

driver. The format of a message statement is given below.

message <file number>,"<message>",<expression list>

The file number is the same as that found in the read and write statements. It must be
an expression that evaluates to a number from zero through ten inclusive. If zero is
specified, the message is directed to the standard output of the UNIX command used to
invoke the simulator. File numbers from 1 through 10 refer to the arguments of the
command used to invoke the simulator. The specified argument is treated as a file name
and opened for output. The message is written on this file.

The message is arbitrary text enclosed in quotes. The message will appear on a
separate line in the specified file. It will be preceded by the characters "* " (asterisk,
blank) to distinguish it from monitor output. If the message contains the character "%"
substitution of expression values will be performed in the same manner as for the C
function "printf" (s.v.). Expression values are used in left-to-right order just as for printf.
Any variable conversions acceptable to printf are acceptable to the message statement.
The following is an example.

message 0,
"The values are %d and %d (%8.8x and %8.8x in hex)",
a+1,b,a+1,b

6.4.12 The error statement
The error statement is used display error messages on the standard error output of the

UNIX command used to invoke the simulator. Its format is identical to that of the
message statement, except the file number is omitted. The following is an example.

Chapter 6 The Test Driver Language

85

if (a*b)!=result
error "Invalid product. %d*%d SB %d, received %d",

a,b,a*b,result
endif

As in the message statement, the error message will appear on a separate line in the
standard error output.

6.4.13 The clock statement
The clock statement is used to cause clock variables to be automatically updated after

every "go" statement. Clock statements are declarations and are not executable. The
following is an example of a clock statement.

clock abc,0,1,2,4

The name "abc" may refer to either a variable or a net. The initial value of the
variable or net will be 0. After the first "go" statement is executed the value of "abc" will
be 1. After the second "go" statement its value will be 2, and so forth. The value changes
only after the "go" statement is completely executed.

6.4.14 The count statement
The count statement is used to increment a counter after every "go" statement. By

default the initial value of the counter is zero, there is no final value, and the increment is
1. The count statement is a declaration and is not executable. The format of the count
statement is given below.

count <net or variable name>

The count statement may be supplied with from 1 to 3 operands in addition to the net
or variable name.. If one operand is supplied, it is assumed to be the inital value of the
counter. If two operands are supplied, they are assumed to be the initial value of the
counter followed by the increment. If three operands are supplied they are assumed to be
the initial value followed by the final value followed by the increment. When a final
value is supplied, and the value of the counter exceeds the final value, its value will be set
back to its inital value. Otherwise a counter is incremented without bound.

6.4.15 On conditions
The on statement is used to test a condition after the execution of each "go" statement.

If the condition is true, a set of specified actions will be taken. An "on" block is a
declaration, and is not executable. The format of an "on" block is given below.

<label>: on <expression>
<arbitrary statements>

endon

The "on" statement acts as if it were an if statement that followed every "go"
statement. When the expression evaluates to true (non zero) the statements between the
on and the endon statements are executed. The on conditions are tested before updates
due to clock and count statements are performed.

Chapter 6 The Test Driver Language

86

The "deactivate" statement may be used to disable an "on" block. The format of the
deactivate statement is given below.

deactivate <on block label>

When a deactivate statement is executed, checking of the "on" block's condition is
suspended, and the statements between the "on" and the "endon" statements will not be
executed regardless of the value of the expression.

The "activate" statement may be used to negate the effect of a previous "deactivate"
statement. Its format is given below.

activate <on block label>

The label of the "on" statement is optional if "activate" and "deactivate" statements
are not used.

The initial state of all "on" blocks is "activated". A deactivate statement may be used
to deactivate the on block before the first "go" statement. It is also possible to define an
"on" block that is initially deactivated by replacing the "on" keyword with the "xon"
keyword as illustrated below. An "xon" block may be terminated with either an "endon"
statment or an "endxon" statement.

<label>: xon <expression>
<arbitrary statements>

endon

6.4.16 The include statement
The include statement can be used to include a file of pre-written driver commands in

the current driver. The include statement is illustrated below.

include "my.dir/my.file"

The single operand of this command is a file name, which should be enclosed in
quotes. (If the file name is a legal driver-language name the quotes may be omitted.) The
all driver commands listed in the file are compiled as part of the current driver. Include
commands may be nested arbitrarily.

6.4.17 Invoking the Interactive Command Interpreter
The interactive command interpreter is invoked using the following command.

interactive

When this command is executed, a prompt will appear on the user's terminal, and the
user may begin entering commands interactively. See section 5 for a discussion of the
interactive command interpreter.

The interpret command is used to interpret command files. A command file is a file
containing a collection of commands for the interactive command interpreter. This file is
passed to the driver in the usual fashion and is executed using the following command.

interpret <file-number>

Chapter 6 The Test Driver Language

87

6.4.18 Dynamic Output Processors
A dynamic output processor can be used to display the data produced by a monitor

command. A dynamic output processor may be attached to any file number from 1-10.
The file number must be larger than the number of operands supplied to the command
that invokes the simulator. The attach command is used to invoke a dynamic output
processor, as illustrated below.

attach <file-number>,<command-name>

The second argument of this command must be the name of a UNIX command for
processing the output. The output of the simulator will appear on the standard input of
the command (for example, the UNIX commands "cat" and "pr" can be used as output
processors.) When output is directed to a dynamic output processor, the output buffer is
flushed at the end of every line, to guarantee that the output processor is synchronized
with the simulator.

The detach command can be used to reverse the effect of an attach command. This
command sends an end-of-file indicator to the output processor, but does not force the
termination of the command. However, the output processor (which runs as a separate
process) must terminate before this command will complete its execution. The following
is an example of the detach command.

detach <file-number>

6.4.19 The quit statement
The quit statement causes immediate termination of the simulation. Its format is

given below.

quit

6.5 The Interactive Command Interpreter
The interactive command interpreter is invoked using the "interactve" command in

the compiled version of the language. One may intermix "interactive" commands
arbitrarily with other commands, or one may test exclusively with the interactive interface
using the following driver definition.

driver
interactive
enddriver

The interactive command interpreter provides a language which is virtually identical
to the compiled driver language. There are, however, certain differences which are
outlined in this section. Interactive commands are entered in response to prompts. The
prompt may have several forms depending on the way commands are entered. The basic
prompt is a greater-than sign ">". If a line ending with a comma is entered, the greater-
than sign changes to a plus-sign, "+", to indicate that a continuation of the same line is
being entered. If a complex command, such as an "if" statement or a "for" statement is
entered, the prompt will be preceded by a number to indicate the nesting level. Any
partially entered command may be deleted by pressing control-C. Control-C may also be

Chapter 6 The Test Driver Language

88

used to prematurely terminate the execution of a loop. (Control-| may be used to kill the
simulation in an emergency.) As with the compiled language, a semi-colon may be used
to place more than one command on a line.

Interactive commands may not be labeled (except in certain cases where labels are
required). Furthermore, it is not necessary to precede the op-code of a command with a
space or a tab, although it is permitted to do so. Alogic macros may not be used with the
interactive language. A native macroing facility is provided instead.

A few commands change function when they are used interactively. The quit
command is used to exit interactive mode rather than to terminate the simulation. The
interpret command is identical to the include command. The function of the include
command does not change. The interactive command may be used within a command
file to allow commands to be entered interactively. It is equivalent to "include /dev/tty".
Control-D must be used rather than "quit" if it is necessary to exit from the interactive
mode back to the command file. The "quit" command terminates the command
interpreter, regardless of nesting levels. Control-D may always be used to exit from
interactive mode, regardless of how it was invoked. Labels are required on all "on" and
"xon" commands. With these exceptions, all commands described in section 4 above
may be used interactively.

There are also a few new commands that enhance the utility of the interactive
interface. These are described below.

6.5.1 The help command
The help command displays a list of available command names. It is illustrated below

help

6.5.2 The show commands
The show commands are used to list the names of variables, signals, macros, and on

conditions. They may also be used to show the contents of interactively entered "on"
blocks and interactively entered macros. The "showv" command, or its alias "ls" is used
to display the names of all variables, on conditions and interactively entered macros.
Each variable will be displayed along with its current value. The name of each "on"
block will also displayed with its trigger condition. If the on block is deactivated, it will
be so indicated. This list includes both compiled variables and on conditions as well as
those that were defined using the interactive interface. (Unlabeled "on" blocks will not be
listed.)

The "shows" command is used to display the names of all signals defined in the
circuit description. The output of the "shows" and "showv" commands appears in
dictionary order, which is not necessarily alphabetic. This problem will be corrected in
the future. The showv and showon commands are illustrated below.

showv
shows

ls

Chapter 6 The Test Driver Language

89

The "showon" statement is used to display the contents of an interactively specified
on block. (The contents of compiled on blocks cannot be displayed.) It is specified as
follows.

showon <on-block-name>

Similarly the "showm" statement is used to display the contents of an interactively
specified macro.

showm <macro-name>

The output of these commands is the list of statments that comprise either the on-
block or the macro. For complex commands such as "while," "if," and "for" "goto"
statements inserted by the parser will appear in this list. The parser breaks "for"
statements into two "set" statements and a "while" statement (and several "goto"
statements), so "for" statements will look peculiar in this list.

6.5.3 Interactively specified macros
For the compiled version of the language, macros are specified using the FHDL

macro processor. Since this macro processor is not available at run time, the interactive
command interpreter provides a native macro facility. A macro is defined as follows.

<label>: macro <argument-names>
... <macro body> ...
endmacro

The macro body may contain any interactive statement except "on" or "xon." (Macro
definitions may not appear inside of an "on" block.) The list of argument names is
optional. An example of a macro is given below.

cycle: macro
 go;go
 endmacro

Once a macro is defined, its name may be used as a command, so the following
command would cause two "go" statements to be executed.

cycle

When argument names are specified, each name defines a local variable whose value
is supplied from the command line that invoked the macro. (The name may duplicate that
of an existing object such as a variable or on block.) Furthermore, new local variables
are generated for each call, so recursive macros will work properly. The following is an
example of a macro with arguments.

test1: macro a,b
for 0->bus1,bus1<a,bus1+1->bus1
for 0->bus2,bus2<b,bus2+1->bus2
go
endfor
endfor
endmacro

Chapter 6 The Test Driver Language

90

This macro would be invoked as follows.

test1 5,10

The number of arguments on the invoking command line does not have to match the
number of arguments in the definition. Extra arguments are ignored, while missing
arguments are assigned the value zero. If a variable or signal name is used as an
argument, it will be passed by address, so macros may perform side-effects on their
arguments. Constants and expressions are passed by value, so an argument of "(x)" will
cause the variable x to be passed by value.

If a "variable" statement appears within the body of a macro, it defines local variables
that exist only while the macro is being executed. Local variables are created and
initialized to zero when the execution of the macro begins. If a local variable has the
same name as some other object, the local definition will replace the former definition of
the name while the macro is executing. The former definition is restored after the macro
terminates, and its value is unaffected. Thus local variables will work properly in
recursive macros, and it is not necessary for different macros to use unique local variable
names, even if they invoke each other.

When a macro is invoked it inherits the environment of its caller. Any variable or
signal that was accesible to the caller is also accessible to the macro. It is possible for a
nested macro to perform side-effects on the local variables of its caller, although this
practice is not recommended.

6.5.4 The remove statement
Any object that is defined through the interactive interface may be "undefined" using

the "remove" statement. This statement may be used to remove variables, on blocks, and
macros. Variables that are the object of "count" or "clock" statements should not be
removed, although this restriction will itself be removed in the future. The following is
an example of a remove statement.

remove a,b,c

91

CHAPTER 7

The Test Data Generator

The FHDL Test Driver Language is designed to simplify the process of creating and
running functional tests. It is capable of running tests, suppressing all but the
"interesting" results, checking for errors, generating the same vector repeatedly until a
condition becomes true, and generating error messages. Driver-language statements
interact dynamically with the simulation to produce results that cannot be achieved in a
static vector environment. Plans are under way to make the driver language interactive,
although this development will not be complete until some time in the future.

7.1 Introduction
This report describes the data generation language "dgl." The language was originally

designed to general functional level tests for VLSI designs, but there is no inherent reason
why this tool cannot be used for other purposes. In particular, there is no reason why this
tool could not be used to generate tests for software systems as well as for other types of
hardware. The tool is particularly adapted to situations requiring random selection and
printing of data. Some frivolous uses that the to has been put to are dealing bridge hands,
and printing daily fortune messages at login time. Despite this, the tool is intended to be
a partial solution to one of the most difficult problems encountered in a VLSI design,
namely that of verifying the correctness of the design at the highest level.

The dgl language was design to facilitate the construction of data generators that
select items at random from a set of items described by a probabilistic context free
grammar. Since many tests contain context sensitive data, or data that is difficult to
describe using a context free grammar, dgl also provides several features for generating
non-context free languages. Once the format of the test data has been described in dgl,
the dgl compiler can be used to create a data-generator based on the grammar. This data-
generator can then be used to saturate a VLSI design with bias-free tests.

Peter M. Maurer
The Windows version of this component is still under development.

Chapter 7 The Test Data Generator

92

7.2 Productions
The basic descriptive unit of dgl is the production. Productions are used to describe

the data that is to be output, and the data generator produces data items by interpreting
productions. The simplest productions have the following form.

<name>: <string>, ... ,<string>;

The element <name>, which is the name of the production, must be a string of letters,
digits and underlines, and should start with a letter. The rules for forming the <string>
elements are given in the next section. The data generator operates by selecting one
alternative from the production named "main" and interpreting it. Each <string>
constitutes one alternative. In the simplest case, the string is simply output as in the
following example.

main: abc,def,ghi,jkl;

In this case, the data generator will simply output one of the four alternative strings
and stop. The situation becomes more complicated when the strings contain references to
other productions. These references are known as non-terminals and are of the form %x
or %{name} where x is a single character and "name" is an arbitrarily long string. When
a non-terminal is found, the interpretation of the current string is suspended, and an
alternative is chosen from the referenced production. This alternative is completely
interpreted before the interpretation of the first string is resumed. It is possible to nest
references arbitrarily deep.

By default alternatives are chosen with equal probability, but it is possible to weight
the alternatives so some of them will be chosen more often than others. The following is
an example of a production with weighted alternatives.

main: 1: abc, 2:def, 3:ghi, 4:jkl;

When the data generator chooses an alternative from this production, "def" is twice as
likely to be chosen as"abc" while "ghi" is three times as likely. If one alternative is
weighted, then all must be weighted. Since the underlying implementation of of
unweighted productions is simpler than that of weighted productions, the use of weighted
productions with all-equal weights should be avoided.

Finally, a production may have an arbitrary number of alternatives, but no two
productions can have the same name.

7.3 The Rules for Forming Strings
Dgl has a number of features that make it easy to form sets of alternatives. The most

straightforward way is to write all alternatives out separated by commas. Strings may be
enclosed in single or double quotes (an apostrophe is a single quote), but the quotes may
be omitted if the strings contain no illegal characters. The illegal characters are colons,
commas, semicolons parentheses, square brackets, dashes, exclamation points, double
and single quotes, spaces, tabs, and newlines. Any other printable character may appear
in a quoted string. If the backslash character is the first character of a string, it will be
deleted and any special meaning attached to the string will be ignored. This feature
allows dgl keywords to be used as alternatives in a production by preceding them with a

Chapter 7 The Test Data Generator

93

backslash as in \macro. Keywords may also be used in an alternative if they are enclosed
in quotes. If it is necessary to begin an unquoted string with a backslash, two consecutive
backslashes must be used.

Strings protected by quotes may contain any character as long as certain conventions
are observed. If a string contains a double quote, the double quote must be preceded by a
backslash. It is also a good idea to precede single quotes by backslashes, but this is not
necessary unless the string is protected by single quotes. The backslash will not appear in
the output. A quoted string must begin and end on a single line. If it is necessary to
include newline characters in a string, the sequence \n should be used. The rules for
backslashes are the same as those for C programs, with one exception. The sequence \0
must not be used in a string. To summarize, \n represents a newline, \t represents a tab, \r
a carriage return, \b a backspace, \f a form feed, \\ a backslash, and \ddd (where ddd is
three octal digits) an arbitrary 8-bit character. In all other cases the sequence \c where c is
an arbitrary character, represents the character c.

If a string is too long to fit on one line, it may be broken at any convenient place, and
the separate pieces placed on consecutive lines. No comma is placed between the strings.
When the dgl compiler encounters two strings that are not separated by commas, it simply
concatenates them (beware of missing commas). Therefore abc, a b c, and "a" "bc" all
mean the same thing. There is a hidden limit of 500 characters on the length of strings,
but if strings are formed by concatenation, the limit rises to 5000 characters. There is no
limit on the length of strings formed at run time, so if strings longer than 5000 characters
are needed, they can be formed by using non-terminals.

Dgl also provides several convenient methods for generating a set of alternatives with
a single string. For example, the set of alternatives a,b,c,d,e,f,g can also be written [a-g].
The following production can be used to select letters of the alphabet, one at a time.

letter: [a-zA-Z];

The construct [<string>] (a string enclosed in square brackets) is called a character
set. Each item in a character set represents one single-character alternative. The simplest
form of the character set contains no dashes as in [abxyz] which is the same as a,b,x,y,z.
When the character set contains a dash, a range of characters is generated. This range
includes the character preceding the dash, the character following the dash, and all
characters in between. When it makes a difference, characters are generated
consecutively either high-to-low or low-to-high, depending on the order of the beginning
and ending characters. Thus [a-f] is the same as a,b,c,d,e,f and [f-a] is the same as
f,e,d,c,b,a. It is possible for a character set to contain duplicates, so [aaa] is the same as
a,a,a. Spaces tabs and newlines in a character set are ignored, so [a b c] is the same as
[abc]. When a character set is concatenated with an ordinary string, the string is
replicated for each member of the character set. Thus part[abc] is the same as parta,
partb, partc. It is possible to concatenate more than one character set in a string as in [a-
z]=[a-z] which is the same as a=a,a=b, ... z=y,z=z. If it is necessary to include any of the
illegal characters in a string, they must be enclosed in quotes, and the quotes must appear
inside the square brackets, as in ["[]()-"]. It is not a good idea to try to use the dash along
with illegal characters, but if you must, something of the form ["!(),:;a"-z] will work. In a
character set, a backslash usually represents itself. One cannot include things like

Chapter 7 The Test Data Generator

94

newlines and returns in character sets. One exception is a backslash that is preceded by a
tab, space, newline, "[" character, a dash, or the closing quote of the preceding string.
These backslashes disappear from the character set. If a character set looks like a dgl
keyword, one of the conventions mentioned above must be used to remove the special
meaning. Thus [macro] is illegal, but [\macro], ["macro"] and [m a c r o] are all legal
and all mean the same thing.

The macro is an extension of the concept of the character set which may be used to
define sets of strings as well as sets of characters. Unlike the character set, the macro is
always declared separately from the production in which it is used. The rules for defining
macros are identical to those for defining unweighted productions, except for the "macro"
keyword which must follow the name of the production as illustrated below.

abcs: macro abc[123],abc100;

The definition of a macro must always precede its use. Once it has been defined, a
macro may be used in any place where a character set is permitted. One uses a macro by
preceding the name with an exclamation point. The name must be followed by a space or
some other illegal character to indicate where the name ends. The following is an
example of a production that uses the macro defined above.

useabcs: head_!abcs;

This production could also have been coded as head_abc1,head_abc2, The rules
for concatenating macros are the same as those for concatenating character sets.

7.4 More Types of Productions
Dgl provides shorthand methods for common types of constructions. For example

suppose it is necessary to create numbers that contain mostly zeros. The following two
productions can be used to accomplish this.

numbers: 3:0, 1:%{nonzero};
nonzero: [1-9];

Dgl allows this sort of thing to be done with a single production as follows.

numbers: 3:0, 1:(1,2,3,4,5,6,7,8,9);

When a list of strings is enclosed in parentheses following a weight, the weight
applies to the list, not to the individual elements. Items within the list are selected with
equal probability. If the set of strings can be completely specified without using commas,
then the enclosing parentheses may be omitted as illustrated below.

numbers: 3:0, 1:[1-9];

Another common requirement is to select numbers from a given range with equal
probability. This is extremely cumbersome with ordinary productions. Dgl provides the
"range" construct for simplifying this type of specification. The following production
causes numbers to be selected from the range 1 through 100, inclusive.

example: range 1,100;

Chapter 7 The Test Data Generator

95

In this example, the one and two digit numbers will be printed without leading zeros.
If it is desirable to have all numbers the same length, the "width" parameter can be added.

example: range width(5) 1,100;

This example will generate 5-digit numbers with leading zeros where necessary. If
the specified width is too short for the generated number, leading digits will be truncated.
The "range" construct allows either number to be negative, and allows a range to be
specified as a single number as illustrated below.

example: range 100;

When a single number is specified, it is assumed that the first number has been
omitted. The first number defaults to zero.

7.5 More on Non-Terminals
The two basic types of non-terminals are %x and %{name}. These non-terminals

may be augmented with a repetition count that causes several selections to be made using
the same production. For example, %5x causes five consecutive selections to be made
from the production "x." The non-terminal %5x is logically equivalent to the sequence
%x%x%x%x%x. When a count is used with the second form of non-terminal, the count
appears outside the curly brackets as in %5{name}. In place of a count, a range can be
used to make a random number of selections. For example, the non-terminal %3-5x will
cause either 3, 4, or 5 selections to be made from the production "x." The numbers 3, 4,
and 5 will be chosen with equal probability.

When a range is used the non-terminal must be enclosed in quotes to remove the
special meaning attached to the character "-". Since non-terminals are interpreted at run
time, enclosing them in quotes does not remove their special meaning. To include data
that looks like non-terminals in the output another special convention must be used. If
the character % is needed in the output, the sequence %% must be used. The sequence
%% appears as a single % in the output. This is a special case of non-terminals that refer
to undefined productions. If the data generator encounters the sequence "%x" and there is
n o production named "x" then the generator will output the character "x". Similarly, if
int encounters %{name} and "name" is not defined, then it will output the string "name".
Repetition counts and ranges will be applied to these strings, so %5x will cause xxxxx to
be output, while %2{name} will cause namename to be output. When a non-terminal is
used in this manner, it is permissible for it to contain special characters. It cannot, of
course, contain curly braces.

Curly braces are significant only after the % character. If they appear anywhere else
in a string they will be treated as output characters. If the data generator encounters the
sequence "%{" and there is no matching "}" character, the entire rest of the string will be
treated as the production name. If ranges are specified as "123-" or "-123" the omitted
number will be treated as a zero. A zero repetition count, a zero selected from a range,
and a range with ending number smaller than the beginning number will cause the non-
terminal to be ignored. If a range contains more than one dash, the second dash and
everything following, up to the production name or curly brace, will be ignored. The

Chapter 7 The Test Data Generator

96

numbers in a range cannot be negative. If an alternative ends with a sequence of the form
"%" or "%25" or "%25-200" this sequence will be ignored.

7.6 Techniques for Systematic Generation of Data
An ordinary production allows duplicates to be selected. For example, each time the

following production is used, the probability of each of the 26 alternatives remains the
same.

abc: [a-z];

For some applications it is necessary to restrict the number of duplicates that can be
selected from each production. If it is desirable to select each letter once and only once,
but in random order, the following production must be used.

abc: unique [a-z];

The "unique" keyword will cause a different letter to be selected each time the
production is used. Letters are chosen at random from the set of unused letters, with
equal probability.

Sometimes it is useful to limit the number of selections of a certain alternative, but
not restrict that number to 1. For example, it may be desirable to choose five a's and three
b's in random order. One way to do this is as follows.

example: unique a,a,a,a,a, b,b,b;

Dgl allows the following shorthand to be used.

example: unique 5:a, 3:b;

When this form is used, every alternative must have a repetition count, even if that
count is 1. If several alternatives have the same repetition count, those alternatives may
be grouped as in the following example.

example: unique 5:(a,b,c), 3:(c,d);

Dgl provides several other types of productions for systematically generating data.
Suppose it is necessary to select alternatives sequentially instead of randomly.This can be
done with the following construct.

example: sequence [a-z];

The "sequence" keyword causes alternatives to be selected sequentially in the order
specified. Both the "unique" construct and the "sequence" construct are identical to
ordinary productions, except for the keyword.

The "counter" construct is the sequential counterpart of the "range" construct. The
following is an example of a counter that produces the sequence 1,3,5,7,9.

ex: counter 1,9,2;

The three numbers following the "counter" keyword are the starting number, the
ending number and the increment, respectively. Any or all of the three numbers may be
omitted. If the first is omitted, it defaults to 1. If the second is omitted, it defaults to "no
ending value," and if the third is omitted, it also defaults to 1. Any of the numbers may

Chapter 7 The Test Data Generator

97

be negative. If the increment is negative, the second number must be omitted or smaller
than the first number. If the combination of the starting number and increment make it
impossible to hit the ending number exactly, the largest number generated will be strictly
less (greater for negative increments) than the ending number.

Normally numbers are output without leading zeros, so numbers with fewer digits
occupy less space than those with more. If it is necessary for all numbers to be the same
length, the "width" keyword should be used as illustrated below.

ex: counter width(5) ,100000;

If the generated number is shorter than the width, it will be padded on the left with
leading zeros. If it is longer than the width, high-order digits will be truncated.

When the start, end, and increment numbers are omitted, it may be necessary to
specify leading or consecutive commas to indicate the position of the omitted number.
Trailing commas should never be specified. The legal combinations are ",n" ",,n" and "n"
for two numbers omitted, and ",n,m" "n,m" and "n,,m" for one number omitted. If all
three numbers are omitted, all commas must also be omitted.

At times it will be necessary to enumerate all combinations of certain types of data.
For example, suppose it is necessary to generate a list of names. We wish to use the first
names "John," "Mary," "Fred," and "Rose." We wish to use an arbitrary letter for the
middle initial, and "Smith," "Jones," and "Brown" for last names. We want to generate
full names for all combinations of these first names, last names, and middle initials. The
following set of productions allows us to do this.

full: chain %{first} " " %{mi} " " %{last};
first: chain John,Mary,Fred,Rose;
mi: chain [A-Z].;
last: chain Smith,Jones,Brown;

These productions are identical to ordinary productions except for the "chain"
keyword. In its simplest form, the "chain" construct is identical to the "sequence"
construct. For example, if the "first" production of the above example were referenced by
an ordinary production, it would produce the sequence "John", "Mary", "Fred", "Rose".
However, when a "chain" production is referenced by another "chain," the sequential
selection of alternatives is coordinated with the selection of alternatives from the
referencing production as well as with the selection of of alternatives from other "chain"
productions referenced either directly or indirectly by the first chain production. The
easiest way to thing about the "chain" construction is to thing of the highest level
production as defining a set of strings. The data generator produces these strings in a
sequential manner. When successive strings are generate, the rightmost production at the
greatest depth varies the fastest. In most cases the highest level production will define
only a finite number of strings. However, it is also possible to use the "chain" construct
to define infinite languages. There is no restriction on how such a language may be
defined, but to be able to enumerate all elements of such a set, special precautions must
be taken in how the "chain" productions are constructed. If the highest-level production
has more than one alternative, only the last alternative should define an infinite number of
strings. If the last alternative has more than one non-terminal, only the first non-terminal
should define an infinite number of substrings. These rules apply recursively to any

Chapter 7 The Test Data Generator

98

"chain" production referenced by the highest level production, directly or indirectly. The
following is an example of a specification that enumerates strings of the form a...ab...b
with an equal number of a's and b's. The strings are enumerated from shortest to longest.

s: chain "", a%sb;

The easiest way to use the "chain" construct is to start with an ordinary grammar
defining the data that is to be generated, and add the "chain" keyword to those
productions that should have every possibility enumerated. Then add the "chain"
keyword to the highest level production to coordinate the selections from the lower-level
productions.

The state of all productions in a "chain" construct is associated only with the highest
level production. Furthermore, the association between related "chain" productions is
constructed at run time. This implies that the state of a "chain" production is different
depending on the highest level of production used to reference it. To illustrate, consider
the following example.

m: %s%s%t%t%u%u;
s: chain x%u,y%u,z%u;
t: chain q%u,e%u,d%u;
u: chain a,b,c;

The first reference to "m" will produce the string xaxbqaqbab. Note that the
production u has three internal states, one associated with indirect references through "s",
one with indirect references through "t", and one associated with direct references. When
it makes a difference, the state of all indirectly referenced productions is considered to be
part of the state of the highest level production.

If an indirectly referenced production is referenced more than once by the highest
level production, there is a separate state maintained for each reference. Thus the
following example generates all combinations of the characters "a", "b" and "c".

letters: chain %s%s%s;
s: chain a,b,c;

This rule also applies if the references are on different levels. Each distinct reference
to a "chain" production in the derivation tree of a string is assigned a distinct state. One
caution, a "chain" production should not reference another chain production using a non-
terminal of the form %5-7s (%5s is ok). If this type of non-terminal is used,
unpredictable results will occur. The same effect can be accomplished by using an
intermediate "chain" production, which will work correctly.

7.7 Running out of Choices
All systematic methods for selecting production alternatives suffer from the same

problem. At some point the number of choices will be exhausted. There are five
selectable actions that can take place when a systematic production runs out of choices.
The actions may be different for different productions. The actions are "continue,"
"restart," "stop," "abort," and "next." These keywords always appear immediately after
the keyword that defines the production type. The default for "counter" and "sequence"
productions is "restart," while the default for all others is "stop." The "restart" option

Chapter 7 The Test Data Generator

99

causes the production to be reset to its initial state when all choices have been exhausted.
The "stop" option causes all further selections from the "main" production to be
suppressed (see section 9). The "stop" option is intended to be used when it is necessary
to generate everything until the set of available choices is exhausted and then stop. The
"restart" option is intended to be used when it is necessary to generate a sequence of
choices repeatedly.

The "abort" option causes immediate program termination if an attempt is made to
reference a production after all choices have been exhausted. The "continue" option
causes the referencing non-terminal to be replaced by the null string when no more
choices remain. The "next" option allows an alternative production to be named that will
be used when no more choices remain in the current production. To illustrate the "next"
option, consider the following example which causes all lower case letters to be generated
in random order, followed by all upper case letters in random order.

first: unique next(second) [a-z];
second: unique [A-Z];

Any production that can run out of choices can have one of these five options attached
to it. If a "counter" production has both an "end-of-choices" and a "width" specification,
the "end-of-choices" must come first. In a "chain" construct, an end-of-choices option is
ignored unless it is attached to the highest-level production.

The types of productions that can have an end-of-choices option are "unique,"
"counter," "sequence," and "chain." See section 14 for other types of productions that
may have an end-of-choices option.

7.8 Variables
Variables can be used to generate non-context-free data, and can be used to generate

context-free data that cannot be conveniently generated by any other means. The primary
use of variables is when it is necessary to general an item of data at random, and insert
that item into the output at several different places. A variable is declared in the
following way.

x: variable;

A value is assigned to a variable by using a non-terminal of the form %{y.x}. This
form of non-terminal causes the data generator to select an alternative from the
production "y" and assign the choice to "x." This form of non-terminal does not generate
output. The alternative chosen from "y" is completely interpreted before being assigned
to "x." Thus under normal circumstances, the string assigned to "x" will not contain non-
terminals. The value of the variable is accessed by using it like a normal production.
Thus the non-terminal %x will cause the current value of the variable "x" to be inserted
into the output. The value of a variable can be assigned to another variable, and variable
assignments can be nested, in the sense that when the alternative from the production "y"
is interpreted, it may have intermediate assignments. Nested variable assignments will
usually work correctly even if the nested reference is to the variable currently being
assigned.

As stated above, the value of a variable will not normally contain non-terminals. This
can be circumvented by assigning a string containing two consecutive % characters, such

Chapter 7 The Test Data Generator

100

as "%%x", to the variable. When this string is assigned to a variable, the double % is
replaced with a single % character, and the non-terminal %x is assigned to the variable.
When the value of a variable is inserted into the output, it is re-interpreted, and any non-
terminals found in the value will be replaced by new choices from the referenced
productions. In practice, this feature will seldom be used. However, this feature allows
one to simulate an arbitrary Turing machine with dgl variables. This implies that dgl
grammars may be used to generate any kind of recursively enumerable data, not just
context-free data. To illustrate, consider the non-context-free language a...ab...bc...c with
an equal number of a's, b's, and c's. The following dgl grammar can be used to generate
this language.

cc: variable;
main: "%a%{cc}";
a: a%ab%{c.cc},"";
c: c%{cc};

This grammar makes use of the fact that the initial value of a variable is the null
string. It is possible t_ initialize a variable by placing the initial value after the "variable"
keyword. The rules for specifying the initial value are identical to those for constructing
the alternatives of ordinary productions. If more than one initial value is specified, all but
the first will be silently ignored.

The rules for variable-assignment non-terminals are similar to those for other non-
terminals. If the non-terminal contains a period, all characters after the first period are
treated as the variable name. All characters preceding the first period are assumed to be
the name of the production from which to choose a value for the variable. If the string
before the first period is not the name of a production, the string itself will be assigned to
the variable. If the string following the period is not the name of a variable, the entire
nonterminal will be output, minus the % sign and the curly braces. The null string can be
assigned to a variable by beginning a non-terminal with a period as in %{.x}. The non-
terminal %{x.} is considered to be the same as %{x}.

Although dgl variables are universally powerful, they are not necessarily convenient
for all purposes. Therefore, dgl provides three other types of variables: stacks, queues,
and hash_tables. All four types of variables can be thought of as dynamic productions
that can have alternatives at run time. Variables have a single alternative, while stacks,
queues, and hash_tables have several. Stacks and queues are similar to the "sequence"
production, while hash_tables are similar to ordinary productions. The alternatives for
stacks and queues are used only once and then discarded, while the alternatives for
variables and hash_tables may be used many times. For queues, the alternatives are used
in the order they were assigned, while for stacks the alternatives are used in reverse order
of assignment. An out-of-choices option can be used with stacks and queues. The
default option is "continue." When a hash_table is referenced, all alternatives are chosen
with equal probability.

Assignments are made to hash_tables, stacks, and queues in the same way as
assignments are made to variables. It is possible to specify initial values for stacks,
queues, and hash_tables by placing a list of values after the defining keyword. The rules
for constructing this list are the same as those for constructing the alternatives of

Chapter 7 The Test Data Generator

101

unweighted productions. An example of hash_table, stack, and queue declarations is
given below.

a: stack;
b: queue;
c: hash_table;
d: stack a,b,c;
e: queue a,b,c;
f: hash_table a,b,c;

For the above declarations, the first value selected from "d" or "e" will be "a",
assuming no assignments have been made before the first selection. Strings containing
non-terminals can be assigned to stacks, queues, and hash_tables by using a double % in
the assigned string. When strings are selected from stacks, queues, and hash_tables, they
are reinterpreted.

7.9 Creating a Data Generator
To create a data generator, one must first have access to the "dgl" program which is

the dgl compiler. Source code and installation instructions may be obtained from the
author. Once the dgl compiler has been installed, it can be used to create a data generator
from a collection of dgl productions. The compiler funs under the UNIX operating
system, and will run without modification on every version of UNIX known to the author,
including System V and Berkeley 4.3.

The first step is to create a file containing dgl productions. This file should have the
suffix ".dgl", and should contain a production named "main". The dgl compiler is used to
transform the set of productions into a C program using the following command.

dgl <specs.dgl >specs.c

Error messages will appear on stdout. In most cases if error messages appear, the
output file (specs.c in this example) will be empty. In any case, the output file will be
unusable if error messages appear. The output of the dgl compiler must be compiled
using the C compiler as demonstrated below. The C compiler must be capable of
handling external names longer than 8 characters.

cc specs.c -o specs

The "specs" program is now the data generator specified by the productions of
"specs.dgl." Each time the "specs" program is executed, it will make 100 selections from
the "main" productions. This can be changed by putting some other number on the
command line, as illustrated below.

specs 20

In this case, 20 selections will be made from the main production. Assuming that
only ordinary productions have been used to construct the data-generator, the "specs"
program will produce a different collection of data items each time it is invoked. This
feature is implemented by having the data generator write its random-number seed to a
file after each invocation, and reading that same file at the beginning of each new
invocation. The file is created in the directory in which the data generator is invoked, so

Chapter 7 The Test Data Generator

102

changing directories circumvents this feature. The name of the file containing the seed is
<command.name>.rand, where <command name> is the name of the UNIX command
used to invoke the data generator. For the "specs" example, the seed file will be named
"specs.rand". The file name is determined dynamically, so changing the name of the
program, or linking it with a new name, will change the name of the file.

7.10 Advanced Features
Dgl provides advanced features for changing many of the things discussed in previous

section. The state of systematic productions can be saved across invocations, the default
number of selections made from the "main" production can be changed, the name of the
random-number seed file can be changed or eliminated entirely, and one can prevent the
user from changing the number of "main" selections at run time. Data generators may be
linked with separately compiled code, and may be used as subroutines by other programs.
These features should allow you to create a data generator that precisely fits your
application.

Normally the data generator makes one or more selections from the production
"main". If the name "main" is inconvenient for some reason, the "start" statement can be
used to change the name of the starting production. The following statement changes the
starting production from "main" to "S".

start: S;

If it is inconvenient to use the flag character as the first character of each non-
terminal, the "flag" statement can be used to change the leading character to something
else. The following statement causes "$" to be the character that identifies non-terminals.

flag: $;

If one of the "illegal" characters is used as a flag, it must be enclosed in quotes as
follows. (It will also be necessary to enclose all non-terminals in quotes.)

flag: "!";

If there is more than one "flag" statement in a set of statements, all but the last will be
ignored.

Many dgl productions have an internal state that can be saved across invocations of
the data generator. The types of productions that have internal states are "unique,
"variable," "stack," "queue," "hash_table," "sequence," "counter," and "chain." The
"save" statement causes the internal state of named productions to be saved in the seed
file. The following statement causes the state of production "a" to be saved across
invocations.

save: a;

A list of production names can be specified as follows.

save: a,b,c;

If it is necessary to save the state of all productions, the following statement should be
used.

save: all;

Chapter 7 The Test Data Generator

103

If it is necessary to save the state of all productions except a, the following two
statements should be used

save:all;
nosave: a;

The rules for "save" and "nosave" are identical. The save and nosave statements can
also be used to prevent the saving of the random-number seed. To prevent the seed from
being saved across invocations, use the following statement.

nosave: seed;

The "save: all;" and "nosave: all;" statements normally do not affect the random-
number seed. You can change this by explicitly declaring the seed using a statement
similar to the following.

x: seed;

This statement allows "x" to be used in place of "seed" in save and nosave statements,
and causes "save: all;" and "nosave: all;" statements to be applied to the seed as well as to
other statements. When the seed is explicitly declared, it can be given an initial value.
To understand how this works, you should be familiar with the UNIX documentation for
"drand48". The dgl random number function is nrand48 found in the documentation for
drand48. The random number seed is specified as three consecutive signed 16-bit
integers. These 16-bit quantities are concatenated to form the 48-bit integers use by
nrand48. The initial value of the seed is specified as follows.

a: seed 16000,-3100,14001;

The initial value is used only when there is no seed file from the previous run in the
current directory. If an initial value is not specified, a value of 4368, 2391, 1031 will be
used. An initial value consists of three numbers separated by commas. The numbers
must be in the range [-32768,32767]. Specifying an initial value for the seed also causes
it to be affected by "save: all;" and "nosave: all;" statements.

The default number of selections from the "main" production is 100. The "repeat"
statement can be used to change this value. The following "repeat" statement makes the
default number of selections from the "main" production equal to 1.

repeat: 1;

The "options" statement can be used to prevent the user from changing the number of
selections at run time. This statement is illustrated below.

options: nocount;

When the "nocount" option is specified, the default number of repetitions will be used
for all invocations of the data generator, regardless of the value of any argument specified
on the command line.

The name of the seed file is normally determined at run time by concatenating the
string ".rand" to the name used to invoke the program. The name of the seed file can be
changed using the "file" statement. The following statement changes the seed file name
to "xyz.file".

Chapter 7 The Test Data Generator

104

file: xyz.file;

Note that no suffix will be appended to the specified name. In this case, the file name
will be relative to the directory in which the data generator is invoked. One can specify a
full path name to override this feature, as in the following example.

file: "/usr/lib/seed.file";

When a full path name is used, all users of the program use the same seed file. No
special protection for the seed file is taken in this case. It is necessary to insure that the
proper UNIX permissions and protections are set properly if the program is to be used by
several different id's.

7.11 Action Routines
Because the "variable" construct is universal, there is no need for dgl to include

attributes and guarded productions. At times, however, it may be convenient to have
action routines attached to certain productions. An action routine could be used, for
example, to create a separate file of expected results for tests generated by the dgl
productions. Since the underlying implementation language of dgl is C, action routines
will normally be coded in C. There is also a feature that allows action routines to be
separately compiled, which allows other languages to be used. The following construct is
used to define an action routine.

a: action
(

Arbitrary C Code
);

Each action routine will be turned into a separate subroutine, so the first statements
should be the declarations of required local variables. Once an action routine has been
defined, it may be referenced as follows.

ordinary: %a;

Action routines are allowed to produce output by calling the "interpret" subroutine.
This subroutine must be invoked with a single character-pointer argument that points to a
null-terminated string. If the string contains non-terminals, they will be replaced by
choices from the referenced production in the output. The argument string will not be
changed. Action routines may produce error messages on "stderr" and may open and
close their own files. They are also permitted to read "stdin" but because the normal
output of the data generator appears on stdout, they are not permitted to write to stdout.

There are four additional statements that can be used to include supporting code for
action routines. The "defines" statement can be used to include any required "#define"
statements and global variable declarations. The "initialize" statement can be used to
include global initialization code, such as opening files. The "termination" statement can
be used to include global termination code such as closing files. The "subroutines"
statement can be used to specify globally accessible subroutines. Subroutines may also
be separately compiled. The format of each of these statements is given below.

Chapter 7 The Test Data Generator

105

defines
(

Arbitrary C code.
);
initialization
(

Arbitrary C code
);
termination
(

Arbitrary C code
);
subroutines
(

Arbitrary C code
);

The initialization and termination statements will be turned into single subroutines.
The dgl compiler will add the subroutine name and the enclosing curly braces. The first
portion of the bodies of these statements should be declarations of local variables. The
bodies of the other two statements are copied into the generated program intact. Note that
if the "defines" statement contains "#define" statements, these must begin on the first
character of a line.

It is possible for action routines, and the initialization and termination routines, to be
separately compiled. A separately compiled action routine is declared by the following
statement.

a: action;

The name of the separately compiled subroutine must be "a_select," for this
declaration. In general, the string "_select" is appended to the name of the action routine
to create the name of the separately compiled subroutine.

Separately compiled initialization and termination routines are declared by the
following statements.

initialization: initl;
termination: terml;

For these two statements, the name of the separately compiled subroutines are "initl"
and "terml" respectively. In general, the initialization and termination statements give the
name of the separately compiled subroutine exactly.

It is possible for action routines and code included in "initialization" "termination"
and "subroutines" statements to access command line arguments. The dgl compiler
initializes two global variables "argc" and "argv". The main routine copies the arguments
to "main" into these variables. These variables can be used in the same manner as normal
"main" program arguments.

Chapter 7 The Test Data Generator

106

7.12 State Variables
At times it may be convenient to reset the state of a production to its initial value

before exhausting all available choices. Dgl does not provide a specific mechanism for
doing this, but instead provides a general mechanism that allows this to be done as a
special case. A state_variable can be used to store the internal state of a production, and
restore the state at some later time. Saving the initial state of a production in a
state_variable allows the initial state to b e restored at any convenient time. A
state_variable is declared using a statement similar to the following.

restore_s: state_variable;

An assignment to a state_variable is identical to an assignment to an ordinary
variable, therefore, the non-terminal %{s.restore_s} assigns the current state of the
production "s" to the state_variable "restore_s." To restore the state of "s", the non-
terminal %{restore_s} is used. Neither of these non-terminals produces any output.
Assigning the state of a production to a state_variable does not cause a selection to be
made from the production, so the internal state of the production does not change. If you
attempt to assign the state of a "stateless" production to a state_variable, the
state_variable will be set to its initial "null" state. A reference to a "null" state_variable is
ignored.

The association between a state_variable and the production whose state it contains is
mad at run time, so a state_variable may be used to hold the state of several different
productions, one at a time. A state_stack or a state_queue can be used to store the state of
several productions at once. When the state_stack or state_queue is referenced, the state
of one production is restored. For state_stacks, the states are restored in reverse order of
assignment. For state_queues, states are restored in the order of assignment.

It is possible to save the state of the random number seed in a state_variable by
declaring the seed and using the name in an assignment. This technique can be used to
reproduce exactly a sequence of random choices.

The states of the following types of productions can be saved in a state_variable:
unique, counter, sequence, chain, variable, stack, queue, hash_table, state_variable,
state_stack, state_queue, and seed. It is possible to save the state of a state_variable in
itself. Assigning the state of one state_variable to another does not copy the value of the
state_variable. For example, if "s" is a "sequence" and "v" and "w" are state_variables,
the sequence %{s.v}%{v.w}...%w will cause the state of "v" to be restored, the state of
"s" will remain unchanged.

The state of a state_variable (or state_stack or state_queue) may be saved across
invocations of the data-generator by specifying the name of the variable in a "save"
statement. The "save: all;" statement applies to state_variables, state_stacks, and
state_queues.

7.13 Data-Generation Subroutines
Normally a set of dgl productions is used to create a stand-alone data-generator. It is

also possible to use the productions to create a data-generation subroutine. This is done
by including the following statement in a set of dgl specifications.

Chapter 7 The Test Data Generator

107

options: subroutine;

When this option is specified, the dgl productions will be turned into a subroutine that
can be linked with a main routine. In fact, three subroutines are created, an initialization
subroutine, a termination subroutine, and a data-generation subroutine. The initialization
subroutine must be called before the first invocation of the data-generation subroutine to
initialize the random-number seed, and process the seed file. The termination routine
must be called after the last invocation of the data-generation subroutine to write the seed
file. Any declared initialization or termination code is executed by the initialization and
termination routines.

The data-generation subroutine is invoked without arguments and returns a pointer to
a character string. This string will be null-terminated, and will be the result of making
one selection from the "main" production. The "repeat" statement and the "nocount"
option are ignored when a subroutine is generated. The string returned by the data-
generation subroutine will have been allocated using the "malloc" subroutine, and must
be freed by the caller of the data-generation subroutine.

By default the name of the data-generation subroutine is "dgl" while the names of the
initialization and termination routines are "dgli" and "dglt" respectively. You can change
this by using the "name" statement as illustrated below. This statement changes the data-
generation, initialization, and termination subroutine names to "gen", "init", and "term"
respectively.

name: gen,init,term;

You can omit names from this statement if you don't want to change them all. If you
change the initialization subroutine name but don't change the data-generation subroutine
name, you must specify a leading command to indicate that the data-generation name is
omitted. Similarly, if the termination routine name is specified, and the initialization
routine name is omitted, two consecutive commas must be specified. Trailing commas
should never be specified.

It is possible to include more than one data generator in a program. To do this it is
necessary to guard against generating "duplicate definition" messages from the linkage
editor. This problem can be avoided by specifying the "static" option. This option causes
everything that does not need to be truly global to be specified as "static." The "static"
option is specified as below.

options: subroutine,static;

Because the "main" routine is no longer generated by the dgl compiler, it is
impossible for the initialization routine to create the seed-file name from command-line
argument zero. Because of this, the initialization and termination routines must be
explicitly informed of the name of the seed file. If a "file" statement is specified, the
initialization and termination routines will use this name. If no "file" statement is
specified, the initialization and termination routines must be invoked with a single
character-pointer argument that points to a null terminated string containing the name of
the seed file. It is not necessary to specify the same name to both subroutines, but in this
case it is the user's responsibility to pass the file along to future invocations of the
program.

Chapter 7 The Test Data Generator

108

7.14 Experimental Features
This section describes features of dgl that are experimental or still under

development. It also describes certain features that were added to support research not
directly related to test generation.

The first feature allows permutations of a list of elements to be generated
systematically. An example of a permutation declaration is given below. This production
generates all permutations of the letters a, b, c, d, e, and f.

exam: permutation a,b,c,d,e,f;

Successive references to this production will generate the strings "abcdef," abcdfe,"
"abcfde," and so forth. The rules for declaring a "permutation" construct are identical to
those for defining an ordinary unweighted production. The state of a "permutation"
construct can be saved across invocations using the "save" statement, and it is possible to
save the state of a "permutation" construct in a state_variable, state_stack, or state_queue.

It is also possible to generate mathematical combinations of elements. This
corresponds to the operation of taking "m" things "n" at a time. It does not correspond to
the intuitive idea of generating all combinations of certain possibilities. The intuitive
idea is implemented using "chain" productions. An example of a combination declaration
that implements the notion of taking six things three at a time is given below.

exam2: combination(3) a,b,c,d,e,f;

This construct will generate the following strings: "abc," "abd," "abe," "abf," "bcd,"
and so forth. To take "m" things "n" at a time, it is necessary to construct a production
containing "m" alternatives, and place the number "n" in parentheses following the
"combination" keyword. The rules for constructing a combination production are
identical to those for constructing an ordinary unweighted production. The state of a
combination construct can be saved across invocations using the "save" statement. It is
possible to save the state of a combination construct in a state_variable, state_queue, or
state_stack.

The "external" declaration allows the right-hand side of an ordinary unweighted
production to be constructed at run time either by an action routine or by the caller of a
data-generation subroutine. The following is an example of an "external" declaration.

a: external;

This declaration requires the user to provide two variables which may either be
separately compiled or placed in a "defines" construct. The first variable is an integer
(int) and must be named "a_size" (replace "a" with the name of your production). The
second variable is a pointer to a pointer to a character (char **) and must be named
"a_table". This variable points to an array of character pointers that must be at least as
large as the value of the "a_size" variable. Each pointer in the array points to a null-
terminated string containing one alternative for the production. The alternatives may
contain non-terminals. The "external" construct is experimental and may be changed or
removed in the future. The alternatives of an "external" production cannot be weighted.

Another experimental construct is the dynamic construct. An example of a dynamic
construct is given below.

Chapter 7 The Test Data Generator

109

a: dynamic 1:x, 2:y, 1:z;

All of the alternatives in a dynamic construct must be weighted. The difference
between a dynamic construct and an ordinary weighted construct is that the dgl compiler
generates a subroutine for a dynamic construct that allows the weights to be changed
dynamically. This subroutine will normally be invoked either by an action routine or by
the caller of a data-generation subroutine. This construct is one method that is currently
being researched to determine the best method for constructing productions with non-
standard probability distributions.

It is well known that there are some probability distributions that cannot be generated
by a probabilistic grammar. One of these is the Poisson distribution. Since this
distribution is important in simulating failures, and since dgl is intended to be used to
inject random errors into the designs of microelectronic circuits, the "poisson" construct
was explicitly designed to allow data items to be generated with the Poisson distribution.
For background, consider the following weighted production.

f: 1:TAIL%f, 1:HEAD;

This production simulates the random experiment of flipping a coin until a head
appears. Since the weights are equal, the coin is fair. One can make the coin unfair by
altering the weights. Each high-level selection fro "F" can be considered to be an event.
The events generated by this production obey the Gaussian distribution. The following
production allows events to be generated according to the Poisson distribution.

p: poisson a%p,"";

The following assumptions are made about this production. Each occurrence of the
letter "a" represents one event. Each string generated by this production represents a
sequence of events that occur in a unit time interval. The production must have exactly
two alternatives, the first of which represents an occurrence of the event being simulated,
and the second of which represents the non-occurrence of the event. The first alternative
mus contain either a direct or indirect recursive reference to the production. Only one
such recursive reference should exist for each use of the production. The second
alternative must contain no direct or indirect reference to the production. If these
assumptions hold, the events simulated by the above production will obey the Poisson
distribution with parameter 1 and time interval 1. The time interval is always fixed at 1,
but a different parameter may be used by enclosing it in parentheses following the
poisson keyword, as in the following example.

p: poisson(3) a%p,"";

The parameter may be any floating point number that is acceptable to the UNIX
function "atof". If the number contains minus signs, the entire number must be enclosed
in quotes. As stated above, the "poisson" feature is experimental.

7.15 White Space and Comments
White space (spaces, tabs, and newlines) are acceptable anywhere within a dgl

specification. White space appearing in a quoted string is part of the string, other white
space is ignored. Newlines should not normally be included in a quoted string, since the

Chapter 7 The Test Data Generator

110

"\n" sequence represents a newline. However, newlines inside of a quoted string will be
accepted, but a warning message will be produced for each such character found. White
space may not be embedded in a dgl keyword.

Comments begin with the two-character sequence "/*" and end with the two-character
sequence "*/". Comments may contain newlines. If the sequence "/*" appears inside a
quoted string or inside an action routine, subroutines, defines, initialization, or
termination statement, it will not be treated as the beginning of a comment. Beware of
using the sequence "/*" in an unquoted string since it will be treated as the beginning of a
comment. Comments may appear anywhere except embedded in a dgl keyword.

Case is significant in production names and production alternatives, so the production
name "S" is considered different from the production name "s". However, case is not
significant in dgl keywords, so MACRO, macro, Macro, and MaCrO all represent the
same keyword. A slight modification to the installation procedure is available that
restricts keywords to lower case.

7.16 Conclusion
Dgl provides an effective means of generating test data. Although many of the

features of dgl are firm, it is a research tool that is supporting active research in VLSI
testing and design verification. Because of this, dgl is currently under development and
will probably remain so for some time. Some of the current features may disappear,
others will be replaced by more useful features. More information about dgl can be
obtained from the author.

Chapter 7 The Test Data Generator

111

7.17 Dgl Keywords and Reserved Characters
The following is an alphabetical list of dgl keywords.
abort permutation
action poisson
all queue
chain range
combination repeat
continue restart
counter save
define seed
defines sequence
dynamic stack
external start
file state_queue
flag state_stack
hash_table state_variable
initialization static
macro stop
name subroutine
names subroutines
next termination
nocount unique
nosave variable
option width
options

The following is a list of all dgl reserved characters (sometimes called "illegal" in the
text)

' (-
") /* (not if separated)
: !
[,
] ;

113

CHAPTER 8

The USF WSI Floorplanner

The USF WSI floorplanner is designed to create wafer layouts. Although it is not
strictly necessary to work with predefined cells, at some point it will be necessary to
incorporate data from MAGIC, or some other layout tool into the floorplan. The first step
in creating the floorplan is to create a tile. The surface of the wafer is covered with tiles,
and all objects must appear in tiles. A tile contains instances of blocks, which must be
created using MAGIC or some other layout tool, along with any required interconnect
wiring. It is possible to create tiles that contain only wires. The data that must be
obtained from MAGIC is the size of each block and the location and size of the ports on
the block. Ports on the sides of a block must connect to the metal 1 layer, while ports at
the top or bottom must connect to the metal 2 layer. It is assumed that if metal in the
appropriate layer is abutted to a port, it will be electrically connected to the port.
Horizontal wires are assumed to lie in the metal 1 layer, vertical wires in the metal 2
layer. No electrical connections between ports should be made. Potential connection
sites are called links, and and may be placed at the intersection of horizontal and vertical
wires. All port connections should be through links, and there should be enough
redundancy to permit the avoidance of bad interconnect. EDIF 1.0 files may be written to
interface with IRT and RWED.

8.1 Introduction
The USF WSI floorplanner is a menu-driven graphics program for the SUN 3 that can

be used to design the layout of a restructurable VLSI wafer. To execute the program, you
must first be logged on to a SUN 3 workstation, and you must be running suntools. To
execute the floorplanner, type the following command in any shell or command window.

floorplanner

When you do this, the following window will appear.

Peter M. Maurer
This Component is Obsolete, since it was designed for the SUNTOOLS environment, which is no longer widely supported. Furthermore, the system that it was supposed to be used with was never built. (Sigh)

Chapter 8 The USF WSI Floorplanner

114

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAAAAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA

File Edit Param Array
AAA A
A
A

A
A

A AA AA AA AA AA AA AA AA AA AA AA AA AA AA A
A
A

A
A

A AA AA AA AA AA AA AA AA AA AA AA AA AA AA A
A
A

A
A

A AA AA AA AA AA AA AA AA AA AA AA AA AA AA A
A
A

A
A

A AA AA AA AA AA AA AA AA AA AA AA AA AA AA A
A
A

A
A

A AA AA AA AA AA AA AA AA AA AA AA AA AA AA A
A
A

A
A

A AA AA AA AA AA AA AA AA AA AA AA AA AA AA A
A
A

A
A

A AA AAA

Floorplanner: my.file

This display has five parts. At the top is a set of commands that can be used to call up
menus and other editing windows. At the left is a selection bar that is used to select the
drawing mode. At the right is a vertical scroll bar that is used to scroll vertically through
the layout. At the bottom is a horizontal scroll bar that is used to scroll horizontally
through the layout, and in the center is the drawing surface, which will be white to
indicate that nothing has yet been drawn. You will also see an arrow on the screen which
represents the mouse cursor. You will use the mouse cursor to draw the various objects
in your layout.

8.2 Drawing Modes
The drawing mode selection bar at the left is used to select the type of object you wish

to draw. You select a type of object by moving the mouse cursor over the icon for the
particular type of object you wish to draw and clicking button 1 (the left button) on the
mouse. The icon for the current drawing mode is shown in reverse-video. Initially you
are in select mode. The drawing modes and associated icons are as follows.

AAA AA
A
A

AA
AA

A AAA AAA AAA AAA AAA AAA AAA AAA AAA AAA AAA AAA AAA AAA AA
A
A

AA
AA

A AAA AAA AAA AAA AAA AAA AAA AAA AAA AAA AAA AAA AAA AAA AA
A
A

AA
AA

A AAA AAA AAA AAA AAA AAA AAA AAA AAA AAA AAA AAA AAA AAA AA
A
A

AA
AA

A AAA AAA AAA AAA AAA AAA AAA AAA AAA AAA AAA AAA AAA AAA AA
A
A

AA
AA

A AAA AAA AAA AAA AAA AAA AAA AAA AAA AAA AAA AAA AAA AAA AA
A
A

AA
AA

A AAA AAA AAA AAA AAA AAA AAA AAA AAA AAA AAA AAA AAA AAA AA
A
A

AA
AA

A AAA AAA AAA AAA AAA AAA AAA AAA AAA AAA AAA AAA AAA AAA AA
A
A

AA
AA

A AAA AAA AAA AAA AAA AAA AAA AAA AAA AAA AAA AAA AAA AAA AA
A
A

AA
AA

A AAA AAA AAA AAA AAA AAA AAA AAA AAA AAA AAA AAA AAA AAA AA
A
A

AA
AA

A AAA AAA AAA AAA AAA AAA AAA AAA AAA AAA AAA AAA AAA AAA AA
A
A

AA
AA

A AAA AAA AAA AAA AAA AAA AAA AAA AAA AAA AAA AAA AAA AAA AA
A
A

AA
AA

A AAA AAA AAA AAA AAA AAA AAA AAA AAA AAA AAA AAA AAA AAA AA
A
A

AA
AA

A AAA AAA AAA AAA AAA AAA AAA AAA AAA AAA AAA AAA AAA AAA AA
A
A

AA
AA

A AAA AAA AAA AAA AAA AAA AAA AAA AAA AAA AAA AAA AAA AAA AA
A
A

AA
AA

A AAA AAA AAA AAA AAA AAA AAA AAA
AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAA
AAA This icon puts you in select mode. Sweep out an area with the cursor by

selecting one corner of a rectangle, pushing button 1 (the left button) on the mouse, hold
the button down until you reach the opposite corner and release the button. Any object in

Chapter 8 The USF WSI Floorplanner

115

the rectangle will be selected. (Note at this time only one object may be selected at a
time.)

 This icon puts you in tile-drawing mode. All other objects must be drawn
inside a tile, so this should be the first object you attempt to draw. To draw a tile, sweep
out a rectangle with the mouse cursor. You do this by selecting one corner of a rectangle,
pushing button 1 (the left button) on the mouse. Hold the button down and select the
opposite corner. When you reach the opposite corner, release the button. The program
will refuse to draw one tile on top of another. The swept-out region must be all-white or
nothing will happen.

 This icon puts you in block-drawing mode. All blocks must be drawn inside
a tile, and the tile must be selected. Unselected tiles are grey, selected tiles are pink.
Draw only in the pink tile. (Use select mode to select a tile for drawing.) To draw a
block, sweep out a rectangle inside a tile. You do this by selecting one corner of a
rectangle, pushing button 1 (the left button) on the mouse. Hold the button down and
select the opposite corner. When you reach the opposite corner, release the button. The
drawn block must be completely contained within the selected tile, and must not overlap
any other block in the same tile. If you violate these rules, nothing will happen.

 This icon puts you in port-drawing mode. Ports must be contained inside blocks,
and can drawn only in blocks for the currently selected tile. Ports are of fixed size which
is determined by the "param" menu. To draw a port, push button 1 (the left button) on the
mouse and hold it. A small square representing the port will appear at the end of the
mouse cursor. Move this square to the appropriate place and release the button. If you
attempt to place a port outside of a block, or outside of the current tile, nothing will
happen. If the port is not at the edge of a block, it will jump to the edge. If the port
touches a wire, it will align itself with the wire. If the square at the end of the cursor is
partly inside and partly outside a block, it will jump inside the block. To align a port with
a wire, place the square at the end of the cursor over the intersection of the wire and the
block.

 This icon puts you in wire-drawing mode. Wires may be horizontal or vertical,
they may not be diagonal. Wires may be drawn only in the currently selected tile. To
draw a wire, select one end point, and push button 1 (the left button) on the mouse. Move
the cursor to the other end point and release the button. Wires appear only outside of
blocks, and will be clipped to the boundary of any block with which they intersect. If a
wire is drawn across a block so that the ends of it appear on either side of the block, it
will be broken into two wires, one on either side of the block. If a wire is drawn partly
inside and partly outside of the selected tile, it will be clipped to the edges of the tile.
Wires may not be drawn closer than the width of a link which appears in the "param"
menu. If the end of a wire touches a port, it will automatically align itself to that port.

 This icon puts you in link-drawing mode. Links may be drawn only at the
intersection of horizontal and vertical wires. To draw links, sweep out a rectangle with

Chapter 8 The USF WSI Floorplanner

116

the mouse. You do this by selecting one corner of a rectangle, pushing button 1 (the left
button) on the mouse. Hold the button down and select the opposite corner. When you
reach the opposite corner, release the button. Links will be drawn at all intersections of
horizontal and vertical wires that appear in the swept out rectangle. Links may be drawn
only in the selected tile.

 This icon puts you in copy-mode. Before using this mode you must select an
object to copy by using the "copy" command from the "edit" menu. This command
allows you to create a copy of the last object that was selected with the "copy" command.
To create a copy, push button 1 (the left button) on the mouse, and hold it down. The
outline of the object will appear at the head of the mouse cursor. Position this outline
appropriately and release the button. A copy will be created at that point. If tiles are
being copied, the new copy may not overlap any existing tile. If any other object is being
copied, it can be copied only into the selected tile. Ports may be copied only into blocks.
Links may not be copied.

 This icon puts you in instance mode. For any object except tiles, this mode is
identical to copy mode. For tiles, this mode creates an instance of a tile rather than a
copy. The difference between instances and copies is that any change to an instance
affects all other instances of the same tile. A change to a copy affects only that copy. In
all other respects instance-mode is the same as copy-mode.

8.3 Menu Commands
There are four menus which can be selected from the top of the screen. The menus

are the "file" menu, the "edit" menu, the "param" menu, and the "array" menu. These
menus are selected by moving the cursor over the appropriate word and pressing button 1.
For the file and edit menus, the cursor must be moved to the proper command before
releasing the button. For the "param" and "array" menus, press the button and release it
immediately.

8.3.1 File Commands
The file commands allow you to read old files, write updates and new files, create

new windows, and so forth. To select a command, move the cursor to "File" at the top of
the screen, push button 1 (the left button) on the mouse, and hold it down. When the
menu appears, move the mouse cursor to the appropriate command and release the
button. The following is a list of available commands.

Save Save the current file. If no file name is known, you will be promted for
the file name. Otherwise, the file name that appears in the colored bar
above the screen will be used as the file name.

Save as Save the current file under a new name. You will be promted for the
name.

Chapter 8 The USF WSI Floorplanner

117

Open Open a file in a new window. Any currently open windows remain. You
are limited to five open windows at a time. If the file name does not
exist, it is assumed to be a new file.

Close Close the current window. If this is the last open window, also quit the
floorplanner. If this is the last open window for the file, and the file has
been modified since the last save, you will be prompted about whether to
save the file.

Edit Edit a different file in the same window. You will be promted for the file
name. If this is the last window for the current file, and the file has been
modified since the last save, you will be prompted about whether to save
the file. If the new file name does not exist, it is assumed to be a new
file.

New Window Open another editing window for the current file. The current window
remains open. Changes will appear in all windows, if visible. You are
limited to five open windows at one time.

Write Edif Write the current file in EDIF 1.0 format. This file will be used as input
to IRT and RWED. Edif files cannot be edited by the floorplanner, and
writing an EDIF file does not count as a save. If the file has already been
written, you may use the off-line program "fptoedif" to create an edif file
from a floorplanner file. The command is "fptoedif <file.fp >file.edif".

Quit Quit the floorplanner, and close all windows. You will be prompted
about any files that have been modified and not saved. This command
returns you to UNIX.

8.3.2 Edit Commands
The Edit commands allow you to make various kinds of changes to your layout that

cannot conveniently be performed using the mouse. To select a command, move the
cursor to "Edit" at the top of the screen, push button 1 (the left button) on the mouse, and
hold it down. When the menu appears, move the mouse cursor to the appropriate
command and release the button. The following is a list of available commands.

Copy Copy the currently selected item into the copy buffer. This item can then
be copied or instanced using the copy-mode or instance-mode from the
drawing-mode menu.

Cut Execute a "copy" command followed by a "delete" command.

Delete Delete the currently selected object. If used on an instance of a tile, this
command applies only to the instance, not to the entire tile. The copy
buffer remains unchanged by this command.

Chapter 8 The USF WSI Floorplanner

118

Reflect x Reflect the currently selected object about the x axis. Although this can
be used with any object, it has noticable effect only on tiles and blocks.

Reflect y Reflect the currently selected object about the y axis. Although this can
be used with any object, it has noticable effect only on tiles and blocks.

Rotate 90 Rotate the currently selected object 90 degrees counter-clockwise. This
command has noticable effect only on tiles, blocks and wires.

Rotate 180 Rotate the currently selected object 180 degrees. This command has
noticable effect only on tiles, blocks and wires.

Rotate 270 Rotate the currently selected object 270 degrees counter-clockwise. This
command has noticable effect only on tiles, blocks and wires.

Repaint Repaint the screen. Sadly to say, the floorplanner drawing software still
has one or two bugs, and suntools also has a few, so sometimes you will
need to use this command to restore a screen that has been destroyed by a
bug. Hopefully you won't need to use this too often.

8.3.3 The Param Menu
The param menu allows you to adjust various parameters of the layout, such as

microns per lambda, and the size of ports and links. It also allows you to zoom a drawing
in and out and allows you to fine-tune the size of various objects in your layout. To use
the param menu, move the cursor to the word "Param" at the top of the screen, push
button 1 (the left button) on the mouse, and let it go. You may continue to draw while the
param menu is displayed, but this is not recommended (one or two bugs still remain).
After clicking on the word "param" the following menu will appear, color-coded to the
screen in which you did the click.

Chapter 8 The USF WSI Floorplanner

119

Microns per lambda: 1.75

WAFER PARAMETERS

(lambdas) Wafer width:

(lambdas) Wafer height:

(lambdas) Wire width:

(lambdas) Port width:

(lambdas) Link width:

VIEW PARAMETERS

Zoom: 50 = 1 pixel per lambda

[50]

(lambdas) Window top-left X:

(lambdas) Window top-left Y:

10000

10000

4

4

23

0

0

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AA
AA
AA
AA
AA
AA
AA
AA
AA

0 100

DoneClose

Parameters

This screen contains several parameters that can be changed. To change a field, move
the mouse-cursor over the number you wish to change, press button 1 (the left button) on
the mouse and let it go. This places the text cursor into the field you wish to change.
You must backspace over the existing number to change it. WARNING: You cannot
type in the parameter screen unless the mouse cursor is inside the parameter screen. After
you have finished typing the new number, press "return" or "tab". If you fail to do this,
your change will be ignored. Once you have made all changes (you can change any or all
fields at once) move the mouse cursor over the "done" button at the bottom, press button
1 (the left button) on the mouse and let it go. This will enter your changes, and make
them immediately visible. To get rid of the "param" menu, move the mouse cursor over
the "close" button at the bottom, press button 1 (the left button) and let it go.

To change the zoom factor, move the mouse cursor into the slider bar that is labeled 0
on the left and 100 on the right. Push button 1 and hold it. The black bar will track the
mouse cursor as long as you hold the button down. The number [50] in brackets will
change to reflect the current position in the slider bar. To make the drawing appear
larger, select a number smaller than 50. To make the drawing appear smaller, select a
number larger than 50. Each 5 units on the bar will double or halve the size of the
drawing. Once you have chosen a zoom size, move the mouse cursor over the done
button at the bottom, and click button 1 (the left button) on the mouse.

Chapter 8 The USF WSI Floorplanner

120

The "param" menu listed above is displayed when no object is selected, or when a
link is selected. When some other object is selected, object parameters are also displayed
in the "param" menu. In this case the "param" menu will look as follows.

Microns per lambda: 1.75

WAFER PARAMETERS

(lambdas) Wafer width:

(lambdas) Wafer height:

(lambdas) Wire width:

(lambdas) Port width:

(lambdas) Link width:

VIEW PARAMETERS

Zoom: 50 = 1 pixel per lambda

[50]

(lambdas) Window top-left X:

(lambdas) Window top-left Y:

10000

10000

4

4

23

0

0

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AA
AA
AA
AA
AA
AA
AA
AA
AA

0 100

DoneClose

Parameters

OBJECT PARAMETERS

(lambdas) Top-left Corner X:

(lambdas) Top-left Corner Y:

(lambdas) Height:

(lambdas) Width:

[TILE]

100

100

50

50

The following is a list of all the fields in the "param" menu and their meanings.

(lambdas) Click on this field to change the units of the field to the right from
lambdas to microns. (Internally all values are kept in lambdas). When
clicked, this field changes to "(microns)". The current value of "Microns
per lambda" is used to recalculate field values.

Chapter 8 The USF WSI Floorplanner

121

(microns) Click on this field to change the units of the field to the right from
microns to lambdas. (Internally all values are kept in lambdas). When
clicked, this field changes to "(lambdas)".

Microns per Lambda This affects only the conversion factor for those fields that are
specified in microns. Changing this field causes the units for all other
fields to change to "(lambdas)". Since all internal values are kept in
lambdas, this does not affect the drawing. In the future this will affect
layout extraction.

Wafer width The width of the wafer in lambdas or microns.

Wafer height The height of the wafer in lambdas or microns.

Wire width The assumed width of all wires. Wires are always drawn one pixel wide.
This has no effect at present, but in the future will affect layout
extraction. It applies to all wires, new and already drawn.

Port width The actual width of a port. Ports are always drawn square. This affects
only new ports. Old ports retain their previous size.

Link width The assumed width of a link. Internally links have no width, so links are
unaffected by this parameter. HOWEVER, wires must be separated by at
least the width of one link, so this will affect how far apart wires can be
drawn.

Window Top-Left X The x coordinate in the wafer of the upper left corner of the
window. Changing this changes the position of the wafer in the window

Window Top-Left Y The y coordinate in the wafer of the upper left corner of the
window. Changing this changes the position of the wafer in the window

Top-Left Corner X The x coordinate of the upper left coordinate of the selected object.
This coordinate appears when the selected object is a block, a tile, or a
port. Coordinates are wafer coordinates.

Top-Left Corner Y The y coordinate of the upper left coordinate of the selected object.
This coordinate appears when the selected object is a block, a tile, or a
port. Coordinates are wafer coordinates.

Height The height of the selected object. This field appears for blocks and tiles.

Width The width of the selected object. This field appears for blocks and tiles.

Endpoint X The x coordinate of the starting point of a line. Lines run right or down
from their starting points.

Chapter 8 The USF WSI Floorplanner

122

Endpoint Y The y coordinate of the starting point of a line. Lines run right or down
from their starting points.

Length The length of a line. Lines run right or down from their starting points.

Direction This field appears only for selected lines and has the value "horiz" or
"vert". Click on the field to change from one to the other.

Zoom Zoom in and out. See above for instructions on how to operate the slider.

Done Clicking this button "accepts" any changes you have made, and alters the
display.

Close Clicking this button makes the "param" menu disappear. Any unaccepted
changes will be purged.

8.3.4 The Array Menu
The array menu is used to create an array of wires, tiles, ports, or blocks. To use the

array menu, first select the object to be arrayed (see section 5). Then move the mouse
cursor over the word "Array" at the top of the screen. Press button 1 (the left button) on
the mouse and let it go. The following menu will appear.

ARRAY TILE

RIGHT Occurences: Separation:

DOWN Occurences: Separation:

LEFT Occurences: Separation:

UP Occurences: Separation:

ARRAY TYPE Instance

DoneCancel

The first line of this menu gives the name of the type of object selected. If you have
selected a link, you may continue, but nothing will happen. Links cannot be arrayed.
Decide which direction you wish the array to go, and how many occurences you want, not
counting the selected object. When the selected object is a vertical wire, only LEFT and
RIGHT directions should be used. When the selected object is a horizontal wire only UP
and DOWN should be used. Similarly, when the selected object is a port, only LEFT and
RIGHT or UP and DOWN should be used depending on whether the port is on a
horizontal or vertical block-edge. Tiles and blocks may be arrayed in several directions at
once. If two orthogonal directions such as RIGHT and DOWN are chosen, the quadrant
will also be filled in.

Chapter 8 The USF WSI Floorplanner

123

If you do not specify a separation, the assumed separation is zero. For tiles this is ok.
For wires, ports, and blocks you will need to calculate the separation between objects.

The field "ARRAY TYPE" has effect only for tiles. By default the array copies of
tiles are instances of the selected tile. However you can make them copies by clicking the
word "instance". When you do this, it changes to "copy". Click the word "copy" to
change it back to instance.

After you have entered all your data, move the mouse cursor over the button "done",
press button 1 (the left button) on the mouse and let it go. This will cause the array
operation to take place, and will make the array menu disappear. If you change your
mind about arraying, move the mouse cursor over the button "cancel", press button 1 (the
left button) and let it go. This will make the menu disappear without performing the array
operation.

8.4 The Scroll Bars
Only the vertical scroll bar will be described here, the horizontal scroll bar is

identical. The scroll bar has five locations, the up arrow, the down arrow, inside the
white box, above the white box, and below the white box. The position of the white box
indicates the current position within the wafer being edited. (See the param menu for the
exact location.) Clicking in the up arrow moves the window up five pixels (the wafer
will move down). Clicking in the down arrow moves the window down five pixels.
Holding button 1 down in either arrow causes the operation to repeat five times a second
after the first second. Large screens will scroll slower. When scrolling with arrows, the
screen is not repainted until button 1 is released, so white area will move into the
unoccupied part of the screen, even if there is really something there.

Clicking above the white box moves the window up one screenful. Clicking below
the white box moves the window down one screenful. This operation does not repeat if
the button is held down. This is the best way to scan down a wafer quickly without
missing anything.

Pushing button 1 down and holding it inside the white box causes the white box to
track the cursor. The final position of the box is determined by releasing the button. The
screen will not be redrawn until the button is released. This is the fastest way to move
large distances.

8.5 Selecting, Moving, and Resizing Objects
To select an object, choose select mode from the drawing-mode bar at the left of the

screen. Then move the cursor to the object you want to select, and click button 1 (the left
button). The object should change color. You cannot select a wire, port, block, or link
unless the tile containing it is already selected. To select these objects requires two
clicks, one to select the tile, and one to select the object. Clicking in a white area
unselects everything. The color of an object determines whether it is selected. An
unselected tile is grey with blue wires, yellow-green blocks, red ports and light-green
links. A selected tile is pink with brown wires, orange blocks, dark green ports and
purple links. When an object is selected within the currently selected tile, it changes back
to its unselected-tile color. Thus a selected block is yellow-green with red ports, a
selected port is red (in an orange block), a selected wire is blue, and a selected link is

Chapter 8 The USF WSI Floorplanner

124

light-green. The last object drawn is automatically selected until another object is drawn
or until another selection is made.

When an object is selected, resizing handles appear at the corners, or at the end of
wires. (Since links cannot be resized, no handles appear.) The currently selected object
can be resized or moved regardless of the current drawing mode. To move the currently
selected object, move the mouse cursor over the object, not inside the resizing handles,
and press button 2 (the middle button) on the mouse and hold it. The object will move
with the mouse cursor until the button is released. If the final position of the object is
illegal (overlapping tiles, etc.) the object will jump back to its original position.
Otherwise the object will move to the new position.

To resize an object, move the mouse cursor into one of the resizing handles, press
button 2 (the middle button) on the mouse and hold it. The corner of the object, or the
end of the wire will move with the mouse cursor until the button is released. The object
will not be resized if its new position is illegal. For blocks, ports, and tiles it is also
possible to resize an edge rather than a corner. Move the mouse cursor between two
resizing handles, press button 2, and hold it. The edge of the object will move with the
cursor until the button is released. Ports always resize to the smallest square that touches
two opposite edges of the new rectangle. When wires and ports are resized or moved,
they align themselves with any port or wire they may touch.

8.6 Conclusion
The floorplanner is your tool. Report any bugs, problems, or inconveniences to Peter

M. Maurer (813) 974-4758.

125

CHAPTER 9

The Wave-Form Generator

9.1 Introduction
The FHDL wave-form generator is designed to be used in conjunction with the FHDL

driver, in either its compiled or interpreted form. The wave-form generator allows the
outputs of a simulation to be graphed as wave-forms. To use the wave-form generator,
you must be logged onto a SUN work station, and must be running suntools.

9.2 Invoking The Generator
To invoke the wave-form generator, use the following driver command. (This

command can be used either interactively, or in the compiled driver.)

attach <n>,wave

The operand <n> must be a number from 1 through 10 (or an expression that
evaluates to a number). Furthermore the number must be at least one larger than the
number of arguments specified on the command that invoked the simulator. If no error
messages are produced as a result of this command, the following screen will appear.

Peter M. Maurer
The Windows Version of this tool is under development. The UNIX version is designed for the SUNTOOLS environment. It is a simple tool that could be adapted to XWINDOWS by interested parties.

Chapter 9 The Wave Form Generator

126

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAAAAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA

File Edit Param Array
AAA A
A
A

A
A

A AA AA AA AA AA AA AA AA AA AA AA AA AA AA A
A
A

A
A

A AA AA AA AA AA AA AA AA AA AA AA AA AA AA A
A
A

A
A

A AA AA AA AA AA AA AA AA AA AA AA AA AA AA A
A
A

A
A

A AA AA AA AA AA AA AA AA AA AA AA AA AA AA A
A
A

A
A

A AA AA AA AA AA AA AA AA AA AA AA AA AA AA A
A
A

A
A

A AA AA AA AA AA AA AA AA AA AA AA AA AA AA A
A
A

A
A

A AA AAA

Wave

The next step is to decide which signals (or variables) you want to graph on the
display, and list them in the following command.

monitor <n>,sig1,sig2,sig3,...,sigN

The number <n> must be the same number specified in the "attach" command. The
names "sig1" through "sigN" are the names of the signals you wish to monitor. For
concreteness, let's assume that you wish to monitor signals a, b, and c, and that a and b
are width 1, while c is of width 2. You would issue the following command.

monitor <n>,a,b,c

In response to this command, the following change appears in the screen.

Chapter 9 The Wave Form Generator

127

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAAAAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA

File Edit Param Array
AAA A
A
A

A
A

A AA AA AA AA AA AA AA AA AA AA AA AA AA AA A
A
A

A
A

A AA AA AA AA AA AA AA AA AA AA AA AA AA AA A
A
A

A
A

A AA AA AA AA AA AA AA AA AA AA AA AA AA AA A
A
A

A
A

A AA AA AA AA AA AA AA AA AA AA AA AA AA AA A
A
A

A
A

A AA AA AA AA AA AA AA AA AA AA AA AA AA AA A
A
A

A
A

A AA AA AA AA AA AA AA AA AA AA AA AA AA AA A
A
A

A
A

A AA AAA

Wave

a

b

c

If you wish, you may issue several "monitor" commands. The screen will be updated
to include the new signals after each "monitor" command. Now you are ready to simulate
your circuit. Assume that you simulate the circuit for four phases using the following
command.

go 4

Assume that "a" starts at zero in phase 1, and toggles between 1 and 0 each phase.
Assume further that "b" starts at one and changes to zero in the third phase and that c
starts at "10" and changes to "01" in the third phase. The result will be displayed as
follows. Note that width-1 signals are displayed as lines that rise and fall with the value
of the signal, while multi-width signals are displayed as grey bars with an X at the point
where the value changes. Along the top of the display you will notice vector numbers at
the head of each column. (They are not shown in the figures.)

When a signal is displayed as a grey bar, you can find out what the real value is by
moving the mouse cursor into the part of the grey bar you are curious about, pressing
button 1 (the left button) on the mouse and holding it. As long as you hold the button
down, a miniature window containing the signal name, vector number, and value will be
displayed. You can do the same thing with single-bit signals to verify the vector number
at a point of change. When you release button 1, the miniature window disappears.
Moving the cursor without releasing the button will not change the value displayed in the
window.

Chapter 9 The Wave Form Generator

128

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAAAAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA

File Edit Param Array
AAA A
A
A

A
A

A AA AA AA AA AA AA AA AA AA AA AA AA AA AA A
A
A

A
A

A AA AA AA AA AA AA AA AA AA AA AA AA AA AA A
A
A

A
A

A AA AA AA AA AA AA AA AA AA AA AA AA AA AA A
A
A

A
A

A AA AA AA AA AA AA AA AA AA AA AA AA AA AA A
A
A

A
A

A AA AA AA AA AA AA AA AA AA AA AA AA AA AA A
A
A

A
A

A AA AA AA AA AA AA AA AA AA AA AA AA AA AA A
A
A

A
A

A AA AAA

Wave

a

b

c
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

A
A
A
A
A
A
A
A
A

AA
AA
AA
AA
AA
AA
AA
AA
AA

A
A
A
A
A
A
A
A
A

You may change the set of signals being displayed at any time. Simply use the
"demonitor" and "monitor" commands to change the list as you desire. The display will
be blanked and the new set of names will appear when you do this. You may scroll back
into the previous display if you desire.

9.3 Scrolling
You may resize the wave-form generator screen at any time, using the sunwindows

resize command. If you monitor more signals than will fit on the vertical display, you
may scroll down using the scroll bar to the right of the display. Clicking on the up arrow
moves the window up (and the vectors down) one signal-name. Holding mouse button 1
down in the arrow causes the window to scroll up continuously. The down arrow works
the same.

If you click button 1 (the left button) above the white box in the scroll bar, the
window moves up one "screenful". Clicking below the box works similarly. At all times,
the white box indicates the position of the window within the total amount of data being
displayed. You may drag the white box to the desired position by moving the mouse
cursor into the box, and holding button 1 (the left) until the box reaches the desired
position. You then release the button to make the position permanent.

You may also scroll forward and backward in the vector display by using the
horizontal scroll bar at the bottom of the display. The horizontal scroll bar works the
same as the vertical bar. When the screen is empty, or when the last vector read is
currently being displayed, the screen will automatically scroll forward to make room for
any new vectors being read. Otherwise the position of the screen remains fixed when
new vectors are read.

9.4 The Command Bar
The command bar at the top of the screen has four commands, two of which are not in

use at this time. Pushing button 1 on the word "File" will cause a menu to be displayed

Chapter 9 The Wave Form Generator

129

containing the sub-command "quit." Select this command to turn off the wave-form
display. Pushing button 1 on the word "Edit" will cause a menu to be displayed
containing the command "Repaint". Select this command to repaint the screen. (Since
this program is in an early stage of development, you may need to use this command
often.) The other two words are inoperative at this time.

9.5 The Mode Bar
The mode bar at the left of the display is inoperative at this time.

9.6 Shutting Down The Display
You may shut the display down at any time by using the "quit" subcommand of the

"File" command. Quitting the simulation will not automatically shut down the display.
You may continue to examine wave-forms and scroll after the simulator has terminated
execution. You must use the "quit" sub-command to terminate the display. If you shut
down the display before you terminate the simulation, and you desire to continue running
the simulator, you should perform the following steps.

1. Demonitor all signals going to the display.
2. Select the "quit" subcommand from the display's "File" command.
3. Issue the FHDL driver command "detach <n>".

9.7 Conclusion
This program is in a very early stage of development. Significant enhancements will

be forthcoming in the future. Since this program is not exactly "main-line" research, new
developments have low priority, so have patience.

131

CHAPTER 10

The Vector Display Program

10.1 Introduction
The FHDL Vector Display program is used to print the output generated by FHDL

Driver "monitor" commands. The Vector Display program can be used to print files
which have been generated by a simulator run, or it can be used interactively either as a
filter for processing standard output or as the target of an "attach" command. The basic
form of the command is as follows.

cv my.file

The name of the program is "cv", while "my.file" is the name of the file to be printed.
By default, the output comes out on standard out, and looks something like this.

File my.file Page 1

 a b c q a b c q a b c q a b c q a b c q a b c q a b
 a b c q 0 0 0 0 1 1 1 1 2 2 2 2 3 3 3 3 4 4 4 4 5 5 5 5 6 6

000 000 000 000 0
001 001 001 001 0
002 002 002 002 0
003 003 003 003 0
004 004 004 004 0
005 005 005 005 0
006 006 006 006 0
007 007 007 007 0
008 008 008 008 0 1 1
009 009 009 009 0 1 1
00a 00a 00a 00a 0 1 1
00b 00b 00b 00b 0 1 1

The names of the signals being monitored are available in the file, and by default, all
signals will be printed in the order they appear in the file.

Peter M. Maurer
The Windows Version of this program is under development.

Chapter 10 The Vector Display Program

132

10.2 Program Options
The "cv" program has many options that can be used to change the appearance of the

output. These are the options.

-ln (or -Ln) Set the maximum number of lines per page to n. Default is to print
headers only at the beginning of a file, or at the beginning of a new set
of vectors within a file. Setting lines per page to zero causes a return
to default behavior.

-wn (or -Wn) Set the maximum length of a printed line to n. Default is to not restrict
the length of a line. Setting line-length to less than 20 causes a return
to default behavior. If the number of signals to be printed is too long
for the current line-length, vectors will be split and printed in sets.
Suppose 20 signals are to be printed and 10 will fit on a line. Suppose
further that 1000 vectors are to be printed, and 50 will fit on a page.
The output will consist of a 40 page report. The first 20 pages will
contain a printout of the first 10 signals, and the second 20 pages will
contain a printout of the last 10 signals.

-K Print the vector-number at the beginning of each line. Vectors are
numbered from 1, and the number is reset at the beginning of each new
file.

-k Same as -K but at the end of each line. Specify -kK for both.

-N Turn off the -K option.

-n Turn off the -k option

-c (or -C) Count lines using the default of 88 lines per page. This should not be
specified with -l (or -L) option.

-Vn Begin printing with vector number n (which will be printed). Vectors
are numbered from 1 starting over at the beginning of each file.

-vn Stop printing with vector number n (which will be printed). Vectors
are numbered from 1 starting over at the beginning of each file.

-of (or -Of) Direct all output to the file named f. Default is standard output. A file
name of "-" causes a return to default behavior.

-pn (or -Pn) Begin page numbers with n. Default is to begin with 1.

-fs (or -Fs) Print the signal named s. To print several signals, a, b, and c, for
example, specify more than one -f option as in "-fa -fb -fc". Default is

INDEX

133

to print all fields. Specifying a field name of "-" causes a return to
default behavior.

-as (or -As) Print the signal named s on all lines, even if lines are broken because
of maximum line length. Default is to print only those fields that do
not fit on the line on subsequent pages. Specifying a field name of "-"
causes a return to default behavior. This option is normally specified
with the -w option. If the -w option is omitted when the -a option is
specified, an -w option of -w132 is assumed.

-bn (or -Bn) Reserve a buffer of size n for input vectors. It will seldom be
necessary to specify this parameter. Default is a buffer of size 5000. If
the vector length of the input file exceeds 4999 characters, you will
need to specify a larger buffer. The buffer must be large enough to
hold the longest line plus one more character. The end-of-line
character at the end of each input vector must be counted in the total.

-zf (or -Zf) Process the file named f for arguments. File f must contain either file
names or arguments of the form described here. Arguments are
separated by white-space characters (spaces, tabs, newlines, formfeeds,
and backspaces). The arguments are processed from left to right, just
as are command arguments. -z options may be nested to any depth.
(See the "CVARGS" environment variable.) This option is used for
convenience when a large number of arguments must be specified for
several files. Once the file has been processed, processing of
command-line arguments continues.

10.3 Processing of Command Line Arguments
Command-line arguments are processed from left to right. When a file name is

encountered, it is processed immediately using any options that were specified before the
appearance of the file name. No arguments following the file name will be used to
process the file. This includes the -o (output file) argument. If no file-names are
specified, the standard input will be read after all arguments are processed. The standard-
input can be processed at any point by specifying a file name of "-". Arguments specified
by means of the "CVARGS" variable are processed before any command-line arguments.

More than one parameter may be specified per argument. For example, an argument
of the form "-kKcw30" is acceptable. For those parameters that have values, the value
may be specified as a separate argument, as in "-w 30", or it may be appended to the
option, as in the above examples. This is also true when more than one parameter is
specified per argument, so "-kKcw 30" is also permissible. When a parameter has a
value, no other parameters may follow the value in the same argument, so -w30V20 is
illegal.

Chapter 10 The Vector Display Program

134

10.4 Environment Variables
The "cv" program processes two environment variables. The first is "CVARGS". If

this variable is defined, its value is assumed to be the name of a file containing arguments
for the "cv" program. A complete path name should be used. This file may contain file
names or any of the options specified in Section 2. It is processed before any command-
line arguments.

The second environment variable is "TEMPDIR". When the -w or -a options are
specified, several passes may be required through each file. The "cv" program creates a
temporary file for all passes other than the first, to avoid having to reparse vectors, and to
permit the standard input to be reprocessed correctly. Normally this file is placed in
"/usr/tmp" but if the TEMPDIR environment variable is set, its value is taken to be the
name of a directory for storing the temporary file.

10.5 Examples
The following are some "cv" commands and the response from each command. The

the input file is named y.data and contains 1024 vectors monitoring the values of a,b,c,q,
a0-a9, b0-b9, c0-c9, and q0-q9. The signals a, b, c, and q are of width 10, while the
others are of width 1.

INDEX

135

10.5.1 Example 1

Command:

cv y.data

Output:

File y.data Page 1

 a b c q a b c q a b c q a b c q a b c q a b c q a b c q a b c q
a b c q a b c q
 a b c q 0 0 0 0 1 1 1 1 2 2 2 2 3 3 3 3 4 4 4 4 5 5 5 5 6 6 6 6 7 7 7 7
8 8 8 8 9 9 9 9

000 000 000 000 0
0 0 0 0 0 0 0 0
001 001 001 001 0
0 0 0 0 1 1 1 1
002 002 002 002 0
1 1 1 1 0 0 2 0
003 003 003 003 0
1 1 1 1 1 1 3 1
004 004 004 004 0 1 1 1 1
0 0 0 0 0 0 4 0
005 005 005 005 0 1 1 1 1
0 0 0 0 1 1 5 1
006 006 006 006 0 1 1 1 1
1 1 1 1 0 0 6 0
007 007 007 007 0 1 1 1 1
1 1 1 1 1 1 7 1
008 008 008 008 0 1 1 1 1 0 0 0 0
0 0 0 0 0 0 8 0
009 009 009 009 0 1 1 1 1 0 0 0 0
0 0 0 0 1 1 9 1
00a 00a 00a 00a 0 1 1 1 1 0 0 0 0
1 1 1 1 0 0 a 0
00b 00b 00b 00b 0 1 1 1 1 0 0 0 0
1 1 1 1 1 1 b 1
00c 00c 00c 00c 0 1 1 1 1 1 1 1 1
0 0 0 0 0 0 c 0
00d 00d 00d 00d 0 1 1 1 1 1 1 1 1
0 0 0 0 1 1 d 1

...

Chapter 10 The Vector Display Program

136

10.5.2 Example 2

Command:

cv -K y.data

Output:

File y.data Page 1

 v

 e

 c

 t

 o

 r a b c q a b c q a b c q a b c q a b c q a b c q a b c q a
b c q a b c q a b c q
 # a b c q 0 0 0 0 1 1 1 1 2 2 2 2 3 3 3 3 4 4 4 4 5 5 5 5 6 6 6 6 7
7 7 7 8 8 8 8 9 9 9 9

00001 000 000 000 000 0
0 0 0 0 0 0 0 0 0 0 0
00002 001 001 001 001 0
0 0 0 0 0 0 0 1 1 1 1
00003 002 002 002 002 0
0 0 0 1 1 1 1 0 0 2 0
00004 003 003 003 003 0
0 0 0 1 1 1 1 1 1 3 1
00005 004 004 004 004 0 1
1 1 1 0 0 0 0 0 0 4 0
00006 005 005 005 005 0 1
1 1 1 0 0 0 0 1 1 5 1
00007 006 006 006 006 0 1
1 1 1 1 1 1 1 0 0 6 0
00008 007 007 007 007 0 1
1 1 1 1 1 1 1 1 1 7 1
00009 008 008 008 008 0 1 1 1 1 0
0 0 0 0 0 0 0 0 0 8 0
00010 009 009 009 009 0 1 1 1 1 0
0 0 0 0 0 0 0 1 1 9 1
00011 00a 00a 00a 00a 0 1 1 1 1 0
0 0 0 1 1 1 1 0 0 a 0
00012 00b 00b 00b 00b 0 1 1 1 1 0
0 0 0 1 1 1 1 1 1 b 1
00013 00c 00c 00c 00c 0 1 1 1 1 1
1 1 1 0 0 0 0 0 0 c 0
00014 00d 00d 00d 00d 0 1 1 1 1 1
1 1 1 0 0 0 0 1 1 d 1
00015 00e 00e 00e 00e 0 1 1 1 1 1
1 1 1 1 0 0 0 0 0 0 0

...

INDEX

137

10.5.3 Example 3

Command:

cv -kK -w80 y.data

Output:

File y.data Page 1

 v v
 e e
 c c
 t t
 o o
 r a b c q a b c q a b c q a b c q a b c q a b c q a b r
 # a b c q 0 0 0 0 1 1 1 1 2 2 2 2 3 3 3 3 4 4 4 4 5 5 5 5 6 6 #

00001 000 000 000 000 00001
00002 001 001 001 001 00002
00003 002 002 002 002 00003
00004 003 003 003 003 00004
00005 004 004 004 004 00005
00006 005 005 005 005 00006
00007 006 006 006 006 00007
00008 007 007 007 007 00008
00009 008 008 008 008 0 1 1 00009
00010 009 009 009 009 0 1 1 00010
00011 00a 00a 00a 00a 0 1 1 00011
00012 00b 00b 00b 00b 0 1 1 00012
00013 00c 00c 00c 00c 0 1 1 00013
00014 00d 00d 00d 00d 0 1 1 00014
00015 00e 00e 00e 00e 0 1 1 00015

...
File y.data Page 2

 v v
 e e
 c c
 t t
 o o
 r c q a b c q a b c q a b c q r
 # 6 6 7 7 7 7 8 8 8 8 9 9 9 9 #

00001 0 0 0 0 0 0 0 0 0 0 0 0 0 0 00001
00002 0 0 0 0 0 0 0 0 0 0 1 1 1 1 00002
00003 0 0 0 0 0 0 1 1 1 1 0 0 2 0 00003
00004 0 0 0 0 0 0 1 1 1 1 1 1 3 1 00004
00005 0 0 1 1 1 1 0 0 0 0 0 0 4 0 00005
00006 0 0 1 1 1 1 0 0 0 0 1 1 5 1 00006
00007 0 0 1 1 1 1 1 1 1 1 0 0 6 0 00007
00008 0 0 1 1 1 1 1 1 1 1 1 1 7 1 00008
00009 1 1 0 0 0 0 0 0 0 0 0 0 8 0 00009
00010 1 1 0 0 0 0 0 0 0 0 1 1 9 1 00010
00011 1 1 0 0 0 0 1 1 1 1 0 0 a 0 00011
00012 1 1 0 0 0 0 1 1 1 1 1 1 b 1 00012
00013 1 1 1 1 1 1 0 0 0 0 0 0 c 0 00013
00014 1 1 1 1 1 1 0 0 0 0 1 1 d 1 00014
00015 1 1 1 1 1 1 1 1 1 1 0 0 e 0 00015

...

Chapter 10 The Vector Display Program

138

10.5.4 Example 4

Command:

cv -kK -w80 -L20 y.data

Output:

File y.data Page 1

 v v
 e e
 c c
 t t
 o o
 r a b c q a b c q a b c q a b c q a b c q a b c q a b r
 # a b c q 0 0 0 0 1 1 1 1 2 2 2 2 3 3 3 3 4 4 4 4 5 5 5 5 6 6 #

00001 000 000 000 000 00001
00002 001 001 001 001 00002
00003 002 002 002 002 00003
00004 003 003 003 003 00004
00005 004 004 004 004 00005
00006 005 005 005 005 00006
00007 006 006 006 006 00007
00008 007 007 007 007 00008
00009 008 008 008 008 0 1 1 00009
00010 009 009 009 009 0 1 1 00010

File y.data Page 2

 v v
 e e
 c c
 t t
 o o
 r a b c q a b c q a b c q a b c q a b c q a b c q a b r
 # a b c q 0 0 0 0 1 1 1 1 2 2 2 2 3 3 3 3 4 4 4 4 5 5 5 5 6 6 #

00011 00a 00a 00a 00a 0 1 1 00011
00012 00b 00b 00b 00b 0 1 1 00012
00013 00c 00c 00c 00c 0 1 1 00013
00014 00d 00d 00d 00d 0 1 1 00014
00015 00e 00e 00e 00e 0 1 1 00015
00016 00f 00f 00f 00f 0 1 1 00016
00017 010 010 010 010 1 1 1 1 0 0 00017
00018 011 011 011 011 0 1 1 1 1 0 0 00018
00019 012 012 012 012 0 1 1 1 1 0 0 00019
00020 013 013 013 013 0 1 1 1 1 0 0 00020

...

INDEX

139

File y.data Page 26

 v v
 e e
 c c
 t t
 o o
 r c q a b c q a b c q a b c q r
 # 6 6 7 7 7 7 8 8 8 8 9 9 9 9 #

00001 0 0 0 0 0 0 0 0 0 0 0 0 0 0 00001
00002 0 0 0 0 0 0 0 0 0 0 1 1 1 1 00002
00003 0 0 0 0 0 0 1 1 1 1 0 0 2 0 00003
00004 0 0 0 0 0 0 1 1 1 1 1 1 3 1 00004
00005 0 0 1 1 1 1 0 0 0 0 0 0 4 0 00005
00006 0 0 1 1 1 1 0 0 0 0 1 1 5 1 00006
00007 0 0 1 1 1 1 1 1 1 1 0 0 6 0 00007
00008 0 0 1 1 1 1 1 1 1 1 1 1 7 1 00008
00009 1 1 0 0 0 0 0 0 0 0 0 0 8 0 00009
00010 1 1 0 0 0 0 0 0 0 0 1 1 9 1 00010

File y.data Page 27

 v v
 e e
 c c
 t t
 o o
 r c q a b c q a b c q a b c q r
 # 6 6 7 7 7 7 8 8 8 8 9 9 9 9 #

00011 1 1 0 0 0 0 1 1 1 1 0 0 a 0 00011
00012 1 1 0 0 0 0 1 1 1 1 1 1 b 1 00012
00013 1 1 1 1 1 1 0 0 0 0 0 0 c 0 00013
00014 1 1 1 1 1 1 0 0 0 0 1 1 d 1 00014
00015 1 1 1 1 1 1 1 1 1 1 0 0 e 0 00015
00016 1 1 1 1 1 1 1 1 1 1 1 1 f 1 00016
00017 0 0 0 0 0 0 0 0 0 0 0 0 0 0 00017
00018 0 0 0 0 0 0 0 0 0 0 1 1 1 1 00018
00019 0 0 0 0 0 0 1 1 1 1 0 0 0 0 00019
00020 0 0 0 0 0 0 1 1 1 1 1 1 1 1 00020

...

Chapter 10 The Vector Display Program

140

10.5.5 Example 5

Command:

cv -kK -w80 -V100 -v108 y.data

Output:

File y.data Page 1

 v v
 e e
 c c
 t t
 o o
 r a b c q a b c q a b c q a b c q a b c q a b c q a b r
 # a b c q 0 0 0 0 1 1 1 1 2 2 2 2 3 3 3 3 4 4 4 4 5 5 5 5 6 6 #

00100 063 063 063 063 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 00100
00101 064 064 064 064 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 00101
00102 065 065 065 065 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 00102
00103 066 066 066 066 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 00103
00104 067 067 067 067 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 00104
00105 068 068 068 068 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 1 1 00105
00106 069 069 069 069 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 1 1 00106
00107 06a 06a 06a 06a 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 1 1 00107
00108 06b 06b 06b 06b 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 1 1 00108

File y.data Page 2

 v v
 e e
 c c
 t t
 o o
 r c q a b c q a b c q a b c q r
 # 6 6 7 7 7 7 8 8 8 8 9 9 9 9 #

00100 0 0 0 0 0 0 1 1 1 1 1 1 1 1 00100
00101 0 0 1 1 1 1 0 0 0 0 0 0 0 0 00101
00102 0 0 1 1 1 1 0 0 0 0 1 1 1 1 00102
00103 0 0 1 1 1 1 1 1 1 1 0 0 0 0 00103
00104 0 0 1 1 1 1 1 1 1 1 1 1 1 1 00104
00105 1 1 0 0 0 0 0 0 0 0 0 0 0 0 00105
00106 1 1 0 0 0 0 0 0 0 0 1 1 1 1 00106
00107 1 1 0 0 0 0 1 1 1 1 0 0 0 0 00107
00108 1 1 0 0 0 0 1 1 1 1 1 1 1 1 00108

(eof)

INDEX

141

10.5.6 Example 6

Command:

cv -kK -aa -ab -ac -aq -w80 y.data

Output:

File y.data Page 1

 v v
 e e
 c c
 t t
 o o
 r a b c q a b c q a b c q a b c q a b c q a b c q a b r
 # a b c q 0 0 0 0 1 1 1 1 2 2 2 2 3 3 3 3 4 4 4 4 5 5 5 5 6 6 #

00001 000 000 000 000 00001
00002 001 001 001 001 00002
00003 002 002 002 002 00003
00004 003 003 003 003 00004
00005 004 004 004 004 00005
00006 005 005 005 005 00006
00007 006 006 006 006 00007
00008 007 007 007 007 00008
00009 008 008 008 008 0 1 1 00009
00010 009 009 009 009 0 1 1 00010
00011 00a 00a 00a 00a 0 1 1 00011
00012 00b 00b 00b 00b 0 1 1 00012
00013 00c 00c 00c 00c 0 1 1 00013
00014 00d 00d 00d 00d 0 1 1 00014
00015 00e 00e 00e 00e 0 1 1 00015

...
File y.data Page 2

 v v
 e e
 c c
 t t
 o o
 r c q a b c q a b c q a b c q r
 # a b c q 6 6 7 7 7 7 8 8 8 8 9 9 9 9 #

00001 000 000 000 000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 00001
00002 001 001 001 001 0 0 0 0 0 0 0 0 0 0 1 1 1 1 00002
00003 002 002 002 002 0 0 0 0 0 0 1 1 1 1 0 0 2 0 00003
00004 003 003 003 003 0 0 0 0 0 0 1 1 1 1 1 1 3 1 00004
00005 004 004 004 004 0 0 1 1 1 1 0 0 0 0 0 0 4 0 00005
00006 005 005 005 005 0 0 1 1 1 1 0 0 0 0 1 1 5 1 00006
00007 006 006 006 006 0 0 1 1 1 1 1 1 1 1 0 0 6 0 00007
00008 007 007 007 007 0 0 1 1 1 1 1 1 1 1 1 1 7 1 00008
00009 008 008 008 008 1 1 0 0 0 0 0 0 0 0 0 0 8 0 00009
00010 009 009 009 009 1 1 0 0 0 0 0 0 0 0 1 1 9 1 00010
00011 00a 00a 00a 00a 1 1 0 0 0 0 1 1 1 1 0 0 a 0 00011
00012 00b 00b 00b 00b 1 1 0 0 0 0 1 1 1 1 1 1 b 1 00012
00013 00c 00c 00c 00c 1 1 1 1 1 1 0 0 0 0 0 0 c 0 00013
00014 00d 00d 00d 00d 1 1 1 1 1 1 0 0 0 0 1 1 d 1 00014
00015 00e 00e 00e 00e 1 1 1 1 1 1 1 1 1 1 0 0 e 0 00015

...

Chapter 10 The Vector Display Program

142

10.5.7 Example 7

Command:

cv -kK -fa9 -fb9 -fc9 -fq9 y.data

Output:

File y.data Page 1

 v v
 e e
 c c
 t t
 o o
 r a b c q r
 # 9 9 9 9 #

00001 0 0 0 0 00001
00002 1 1 1 1 00002
00003 0 0 0 0 00003
00004 1 1 1 1 00004
00005 0 0 0 0 00005
00006 1 1 1 1 00006
00007 0 0 0 0 00007
00008 1 1 1 1 00008
00009 0 0 0 0 00009
00010 1 1 1 1 00010
00011 0 0 0 0 00011
00012 1 1 1 1 00012
00013 0 0 0 0 00013
00014 1 1 1 1 00014
00015 0 0 0 0 00015

...

10.5.8 Example 8

Command:

cv -kK -fa -fb -fc -fq -V150 -v155 -o ex8 y.data -V200 -v203 -o \
ex9 y.data

Output: (File ex8)

File y.data Page 1

 v v
 e e
 c c
 t t
 o o
 r r
 # a b c q #

00150 095 095 095 095 00150
00151 096 096 096 096 00151
00152 097 097 097 097 00152
00153 098 098 098 098 00153
00154 099 099 099 099 00154
00155 09a 09a 09a 09a 00155

(eof)

INDEX

143

Output: (File ex9)

File y.data Page 2

 v v
 e e
 c c
 t t
 o o
 r r
 # a b c q #

00200 0c7 0c7 0c7 0c7 00200
00201 0c8 0c8 0c8 0c8 00201
00202 0c9 0c9 0c9 0c9 00202
00203 0ca 0ca 0ca 0ca 00203

(eof)

Chapter 10 The Vector Display Program

144

10.6 Conclusion
Report any bugs, complaints, or suggestions for improvement to the author. This is a

new tool, expect to find some bugs and some things that you don't like. Most such things
are easy to fix in this program, so don't be afraid to ask.

145

Index

—B—
-, 46, 54, 55, 77

—!—
!, 45, 54, 55, 77
!=, 45, 54, 77

—#—
#, 49, 55

—$—
$END, 60
$EQ, 45
$GE, 45
$GT, 45
$LE, 45
$LT, 45
$NE, 45
$START, 60

—%—
%, 54
%f, 35
%t, 35

—&—
&, 55, 77
&&, 45, 54

—*—
*, 46, 54, 55, 77
**, 54

—+—
+, 46, 54, 55, 77

—,—
,, 77

—/—
/, 46, 54, 55, 77

—<—
<-, 46
<, 45, 54, 77
<<, 55
<=, 45, 54, 77

—=—
==, 45, 54, 77

—>—
->, 77
>, 45, 54, 77
>=, 45, 54, 77
>>, 55

—@—
@, 52

—^—
^, 55

—|—
|, 55, 77
||, 45, 54

—~—
~, 55

—A—
abort, 98
action, 104, 105
activate, 85
active high, 24, 34
active low, 4, 24, 34
adder, 9, 10, 11
addresses, 25
algorithmic state machines, 15
alogic command, 63

INDEX

146

alu, 9, 12
alu functions, 13
aname, 54
and, 7
aoi, 7
apply operator, 52
args function, 48
arithmetic operators, 77
array quadrant, 122
array type, 123
asm conditional outputs, 16
asm conditions, 15
asm states, 15
assigment, 99
assign statement, 46
assignment, 106
assignment operator, 77
assignment statements, 78
atom, 57
attach, 87, 125
attributes, 54
avalue, 54

—B—
begin, 37
binary, 57
block mode, 115
boolean operators, 77
break, 48, 84
btoi, 57
bus declarations, 4
bus manipulation, 4

—C—
calln, 49
callt, 52
cancel, 123
case, 110
chain, 97
character sets, 93
clock, 85
Close, 117, 122
cmdpos, 24
coercion, type, 57
collect, 4, 9
colors, 123
combination, 108
comma, 77
command format, 1
command position, 24
command statement, 25, 35
command UNIX, 63
command, UNIX, 2, 29, 40, 113, 125, 131
comment, 110
comments, 63
comparator, 9, 10
comparators, 77
comparison operators, 77

concatenation, 55, 93
concatentation, 49
condition statement, 36
conditions, nested, 37
cons, 57
consr, 57
constant, 28
constant signals, 4
constants, integer, 58
continue, 48, 84, 98
Copy, 117
copy mode, 116
count, 46, 85
counter, 9, 12, 96
ctoi, 58
Cut, 117
cv command, 131
cv options, 132

—D—
deactivate, 86
decoder, 9, 10
default, 23, 25, 34, 35
defines, 104
Delete, 117
demonitor, 81, 129
demux, 9, 10
detach, 87, 129
dff , 8
dff1, 8
dff2, 8
dff3, 8
dff4, 8
dgl command, 101
dgl file, 101
dgl format, 92
Direction, 122
disp, 52
display, 80
displayd, 80
distribute, 4, 9
Done, 122, 123
driver statements, 76
dynamic, 108

—E—
edif, 113
Edit, 117
elif, 53, 82
else, 45, 82
encoder, 9, 10
end, 37
enddriver statements, 76
endfor, 47, 83
endif, 45, 81
endmacro, 44
endon, 85
endpla, 40

INDEX

147

Endpoint X, 121
Endpoint Y, 122
endrom, 29
endwhile, 46, 83
endxon, 86
environment variables, 134
eof, 80
equ, 22, 32
error, 45, 84
error levels, 46
exit, 45
expand, 9
expression, 46
expression statements, 78
expressions, 54, 77
external, 108

—F—
fhdl command, 2
field, 22, 32
field AND plane, 32
field OR plane, 32
file, 103
file number, 79, 80
first, 56
flag, 102
floorplanner command, 113
for, 47, 83
format of statements, 76
format, command, 35
format, dgl, 92
format, macro, 43
format, multiple, 27, 38
format, pla, 38

—G—
gate declarations, 2
gblint, 50, 51
gbllist, 51
gblstr, 50, 51
get, 79
getd, 79
global variables, 50
go, 78, 127
goto, 89

—H—
hash_table, 100
Height, 121
help, 88
hex, 57
hierarchy, 3
hlcv, 9

—I—
if, 45, 81

ilist, 46, 47
include, 29, 40, 60, 86
indirection operator, 49
initialization, 104, 105
input vectors, 79
input, gate, 2
input, macro, 45
input, pla, 37
input, primary, 2
instance mode, 116
int, 51
interactive, 86, 87, 88
interpret, 86, 88
itos, 57

—J—
jkff , 8
jkff1 , 8
jkff2 , 8
jkff3 , 8
jkff4 , 8

—L—
label function, 50, 61
labels, 76
lambdas, 120
len, 56
Length, 122
link mode, 115
Link width, 121
list, 51, 56
list constants, 57
llist, 61
ls, 88

—M—
macro, 44
macro arguments, 48
macro call, 44
macro libraries, 60
macro variables, 50
macro, dgl, 94
macros, 89
message, 84
metal layers, 113
microns, 121
Microns per Lambda, 121
monitor, 80, 125, 126, 131
monitor output format, 81
monitord, 81
monitorx, 81
monitorxd, 81
moving, 124
mux, 9, 10

INDEX

148

—N—
name, 107
names, 77, 78
nand, 7
net names, 1, 76
network, 59
New Window, 117
newline, 109
next, 98
no connects, 4
nocount, 103, 107
nor, 7
nosave, 103
not, 7
null function, 56
null list, 56
null string, 56
numbers, 77

—O—
oai, 7
object parameters, 120
octal, 57
olist, 46, 47
on, 85
on labels, 86
opcode function, 61
opcode, pla, 36
opcodes, 76
opcodes, rom, 26
Open, 117
operands, 76
operator precedence, 55
Operator priority, 77
operators, protected, 55
options, 103, 106, 107
or, 7
org, 25
otoi, 57
output format, 80
output redirection, 59
output sections, 59
output, gate, 2
output, macro, 45
output, pla, 37
output, primary, 2
output, rom, 26

—P—
parameter changes, 119
parenthesized alternatives, 94, 96
partial statements, 52
permutation, 108
pla format, 31
pla sequencer, 41
pla statement, 40
PLA, FHDL native, 6

plasm command, 40
plaword, 6
poisson, 109
port mode, 115
Port width, 121
production, 92

—Q—
queue, 100
quit, 87, 88, 117, 129
quoted strings, 93

—R—
ram, 9, 11
range, 94, 95
read, 79
readd, 79
Reflect x, 118
Reflect y, 118
register, 9, 11
remove, 90
Repaint, 118
repeat, 103, 107
repetition count, 95
resizing, 124
rest, 56
restart, 98
return variable, 61
rom sequencer, 30
rom statement, 21, 29
rom, native FHDL, 5
romasm command, 29
romword, 5
Rotate 180, 118
Rotate 270, 118
Rotate 90, 118
rsff , 8
run function, 56

—S—
save, 102, 116
save all, 102
Save as, 116
scrolling, 123, 128
seed, 103, 106
seed file, 101, 103, 107
select, 56
select mode, 114
selecting, 123
sequence, 96
set statements, 79
showm, 88
showon, 88
shows, 88
showv, 88
simple state machines, 17
size, 26, 36

INDEX

149

space, 109
special characters, 92
stack, 100
start, 102
state_queue, 106
state_stack, 106
state_variable, 106
statement terminators, 76
static, 107
stdout, 59
stop, 98
str, 50, 51
string length, 56
subcircuits, 3
subnetwk, 59
subroutine, 106
subroutines, 104
substr, 55

—T—
tab, 109
tbufi , 9
termination, 104, 105
tff , 8
tff1 , 8
tff2 , 8
tff3 , 8
tff4 , 8
tgate, 9
tile mode, 115
Top-Left Corner X, 121
Top-Left Corner Y, 121
true, 24, 34
type, field, 32

—U—
undefined productions, 95
unique, 96
unique, weighted, 96
UNIX command, 101

—V—
variable, 99
variable names, 76
variable, macro, 46
variables, 62, 78
vectors, 79

—W—
Wafer height, 121
Wafer width, 121
wave command, 125
weighted productions, 92
while, 46, 83
width, 95, 97, 121
Window Top-Left X, 121

Window Top-Left Y, 121
window, floorplanner, 113
wire, 4
wire mode, 115
Wire width, 121
word, 23, 33
write, 80
Write Edif, 117
writed, 80
writex, 80
writexd, 80

—X—
xnor, 7
xon, 86
xor, 7
xtoi, 57

—Z—
zoom, 119, 122

150

	Cover
	Contents
	Gate-Description Language
	Overview
	Simulating Circuits
	Creating and Using Subcircuits.
	Wire Declarations.
	The FHDL ROM Specification Language
	The FHDL PLA Specification Language
	Known Gate Types.
	Simple Gate Types
	And-or-inverts and Or-and-inverts.
	Flip Flops.
	Tristate Gates
	Special Function Gates
	Functional Blocks
	Mux format
	Demux format
	Decoder format
	Encoder format
	Comparator format
	Adder format
	Ram format
	Register format
	Counter format
	ALU format

	Algorithmic State Machines
	ASM State Declarations
	ASM Condition Declarations
	ASM Conditional Output Declarations
	State Machine Examples

	The ROM Preprocessor
	Overview
	Specifying Fields.
	Using Equates.
	Specifying ROM words.
	Required Fields
	Complex Commands
	ROM addresses.
	Adding New Opcodes
	ROM Output
	ROMs With Multiple Word Formats
	Include Statements
	Running the preprocessor
	Using ROMs

	The PLA Preprocessor
	Overview
	Specifying Fields.
	Using Equates.
	Specifying AND and OR Plane
	Required OR Plane Fields
	Complex Commands
	Complex Conditions
	Limiting the Number of Wordlines
	Adding New Opcodes
	The Begin and End Statements
	Grouping Input and Output Fields
	Multiple OR Plane Formats
	Include Statements
	Running the preprocessor
	Using PLAs

	The MACRO Preprocessor
	Overview
	A Simple Macro Definition
	A More Complicated Example
	Accessing The Argument List
	Generating Net Names
	Function Calls
	Generating Partial FHDL Statements
	The else-if Construct
	Accessing Attributes
	Arithmetic and Logical Expressions.
	String Handling Functions.
	List Handling Features
	Type Conversion Functions
	Redirecting Output
	Creating Macro Libraries
	Including Text
	A Word on Format
	Executing the Preprocessor
	Macro Statement Summary
	Operand-Type Designators
	Statements

	Macro Function and Builtin Variable
	Operand-Type Designators
	Functions and Variables

	Macro Operator Summary
	Operand-Type Designators
	Operands

	Macro Processor Keywords
	Macro Operator Precedence

	The Test Driver Language
	Introduction
	The Format of the Language
	Expressions
	Statements
	The variable statement
	The go Statement
	The expression statement
	The read statements
	The write statements
	The monitor statements
	The if statement
	The while statement
	The for statement
	Break and continue statements
	The message statement
	The error statement
	The clock statement
	The count statement
	On conditions
	The include statement
	Invoking the Interactive Command Interpreter
	Dynamic Output Processors
	The quit statement

	The Interactive Command Interpreter
	The help command
	The show commands
	Interactively specified macros
	The remove statement

	The Test Data Generator
	Introduction
	Productions
	The Rules for Forming Strings
	More Types of Productions
	More on Non-Terminals
	Systematic Generation of Data
	Running out of Choices
	Variables
	Creating a Data Generator
	Advanced Features
	Action Routines
	State Variables
	Data-Generation Subroutines
	Experimental Features
	White Space and Comments
	Conclusion
	Dgl Keywords and Reserved Characters

	The USF WSI Floorplanner
	Introduction
	Drawing Modes
	Menu Commands
	The Scroll Bars
	Selecting, Moving, and Resizing Objects
	Conclusion

	The Wave-Form Generator
	Introduction
	Invoking The Generator
	Scrolling
	The Command Bar
	The Mode Bar
	Shutting Down The Display
	Conclusion

	The Vector Display Program
	Introduction
	Program Options
	Processing of Command Line Arguments
	Environment Variables
	Examples

