1. Let $A = \{0, 1, 2, 3\}$, $f : A \rightarrow A$.

(a) If $f(a) = (a+1) \% 4$, is f 1-1? if f onto? is f a function?
- 1-1, onto and a function

(b) If $f(a) = (a+1) \% 4$, is f^{-1} 1-1? if f^{-1} onto? is f^{-1} a function?
- 1-1, onto and a function

(c) If $f(a) = (2a) \% 4$, is f 1-1? if f onto? is f a function?
- Not 1-1, not onto and a function

(d) If $f(a) = (2a) \% 4$, is f^{-1} 1-1? if f^{-1} onto? is f^{-1} a function?
- Not 1-1, Not onto and not a function

2. Let $f : A \rightarrow A$ such that f is a bijection and $R(A, A)$ such that R is symmetric. Prove or disprove that $f \subset R \rightarrow f^{-1} \subset R$.

- Since f is a bijection every element of the co-domain A has exactly one domain element mapped to it. Also, $R(A, A)$ is symmetric so for every element (a, b) in R there is also an element (b, a) in R.

- If $f \subset R$, every ordered pair (a, b) of f also belongs to R. f^{-1} contains elements of f in reversed form. That means for every $(a, b) \in R$, $(b, a) \in R^{-1}$. Since R is symmetric, it contains all such (b, a) ordered pairs. So $f^{-1} \subset R$.

Proved

3. Let A and B be arbitrary sets. Let $R(A, B)$. Provide a predicate for R such that R would meet the definition of a 1-1 function.

For R to be a 1-1 function, it must be a function and it must be 1-1.

Let P be the predicate for a function $\forall (a, b), (a_1, b_1) \in R, a = a_1 \rightarrow b = b_1$
Then a 1-1 function can be defined as \(P \land \forall (a, b), (a_1, b_1) \in R, b = b_1 \rightarrow a = a_1. \)

4. Let A and B be arbitrary sets. Let \(R(A, B) \). Provide a predicate for \(R \) such that \(R \) would meet the definition of an onto function.

For \(R \) to be a onto function, it must be a function and it must be onto.

Let \(P \) be the predicate for a function \(\forall (a, b), (a_1, b_1) \in R, a = a_1 \rightarrow b = b_1 \)

Then an onto function can be defined as \(P \land \forall b \in B, a \in A \) such that \((a, b) \in R \).

5. Let \(f: \mathbb{Z} \rightarrow \mathbb{Z} \) and \(g: \mathbb{Z} \rightarrow \mathbb{Z} \). For each pair of functions, produce a formula for \(f(g(x)) \) and \(g(f(x)) \).

(a) \(f(x) = 2^x \), \(g(x) = x + 1 \)

\(f(g(x)) = 2^{x+1} \)
\(g(f(x)) = 2^x + 1 \)

(b) \(f(x) = \lceil x/2 \rceil \), \(g(x) = 2x \)

\(f(g(x)) = \lceil 2x/2 \rceil = x \)
\(g(f(x)) = 2\lceil x/2 \rceil \)

(c) \(f(x) = 2x \), \(g(x) = x + 1 \)

\(f(g(x)) = 2x+2 \)
\(g(f(x)) = 2x+1 \)