1. Compute the following, or indicate if it cannot be computed.

a) \(M \times N \)
\[
\begin{bmatrix}
3 & 3 & 3 \\
-3 & -3 & -3
\end{bmatrix}
\]

b) \(M \times O \)
- Cannot be computed

c) \(O \times M \)
\[
\begin{bmatrix}
2 & -2 \\
-2 & 2 \\
1 & -1
\end{bmatrix}
\]

d) \(N \times O \)
\[
\begin{bmatrix}
1 & 1 \\
1 & 4
\end{bmatrix}
\]

e) \(O \times N + M \)
- Cannot be computed

f) \((O \times N + M)^2\)
- Cannot be computed

g) \(M^3 \)
\[
\begin{bmatrix}
-4 & 4 \\
4 & -4
\end{bmatrix}
\]

2. Let \(A = \{1, 2, 3, 4, 5, 6\} \). For each \(R(A, A) \), create the corresponding matrix \(MR \). Order the elements in \(A \) by ascending value.

a is represented as rows and b as columns in the following matrices.
(a) $R=\{(a,b)|a \leq b\}$

$$
\begin{bmatrix}
1 & 1 & 1 & 1 & 1 & 1 \\
0 & 1 & 1 & 1 & 1 & 1 \\
0 & 0 & 1 & 1 & 1 & 1 \\
0 & 0 & 0 & 1 & 1 & 1 \\
0 & 0 & 0 & 0 & 1 & 1 \\
0 & 0 & 0 & 0 & 0 & 1 \\
\end{bmatrix}
$$

(b) $R=\{(a,b)|a \% 2 = 0 \land b \% 2 = 1\}$

$$
\begin{bmatrix}
0 & 0 & 0 & 0 & 0 & 0 \\
1 & 0 & 1 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
1 & 0 & 1 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
1 & 0 & 1 & 0 & 1 & 0 \\
\end{bmatrix}
$$

(c) $R=\{(a,b)|a + b = 7\}$

$$
\begin{bmatrix}
0 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 0 \\
\end{bmatrix}
$$

3. Consider the identity matrix I as a boolean matrix. Consider an arbitrary relation $R(A, A)$ such that $M_R=I$. Using I, prove or disprove R is reflexive, symmetric, antisymmetric and transitive.

A 3*3 identity matrix is given below:

$$
\begin{bmatrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1 \\
\end{bmatrix}
$$

All the diagonal elements are 1. So for a relation $R(A,A)$ such that $M_R=I$, all the diagonal elements in M_R are 1. So R is reflexive.

In case of identity matrix for all i and j, $m_{ii} = m_{ij}$. For a relation $R(A,A)$ such that $M_R=I$, for all i and j in M_R, $m_{ji} = m_{ij}$. So R is symmetric.

For I, for all i and j $m_{ji} = m_{ij}=1$ implies $i=j$. All the non diagonal elements are 0. So whenever $m_{ij}=m_{ji}=1$ it means $i=j$. So for a relation $R(A,A)$ such that $M_R=I$, for all i and j in M_R, whenever $m_{ij}=m_{ji}=1$ it means $i=j$. So R is antisymmetric.
For a relation $R(A,A)$ such that $M_R=I$, for all i,j and k, whenever $m_{ij}=1$ and $m_{jk}=1$, m_{ik} is also equal to 1. So R is transitive.

4. Consider the matrix P below. Consider an arbitrary relation $R(A, A)$ such that $M_R=P$. Using P, prove or disprove R is reflexive, symmetric, antisymmetric and transitive.

Matrix P is given below:

$$
egin{bmatrix}
1 & 0 & 1 \\
0 & 1 & 0 \\
1 & 0 & 1
\end{bmatrix}
$$

All the diagonal elements are 1. So for a relation $R(A,A)$ such that $M_R=P$, all the diagonal elements in M_R are 1. So R is reflexive.

For matrix P, $m_{ji}=m_{ij}$ for all i and j. For a relation $R(A,A)$ such that $M_R=P$, for all i and j in M_R, $m_{ji}=m_{ij}$ So R is symmetric.

For Relation R to be antisymmetric, the matrix M_R satisfy: $m_{ji}=m_{ij}=1$ implies $i=j$ for all i and j. But in matrix P, $m_{31}=m_{13}=1$ and $i \neq j$ in that case. So R is not antisymmetric.

For a relation $R(A,A)$ such that $M_R=I$, for all i,j and k, whenever $m_{ij}=1$ and $m_{jk}=1$, m_{ik} is also equal to 1. So R is transitive.

5. Consider the matrix answer to 2(c). Use this matrix to prove or disprove R is reflexive, symmetric, antisymmetric and transitive.

Matrix answer to 2(c) is given below:

$$
egin{bmatrix}
0 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 0
\end{bmatrix}
$$

The diagonal elements are 0. The condition required for reflexive property is $m_{ii}=1$ for all i. But all m_{ii} is 0 in the above matrix. So R is not reflexive.

For the above matrix, $m_{ji}=m_{ij}$ for all i and j. So R is symmetric.
For Relation R to be antisymmetric, the matrix M_R satisfy: $m_{ij} = m_{ji}=1$ implies $i=j$ for all i and j. But in the above matrix, $m_{61} = m_{16}=1$ and $i \neq j$ in that case.
So R is not antisymmetric.

For a relation $R(A,A)$ to be transitive the following condition must hold: In matrix M_R Whenever $m_{ij}=1$ and $m_{jk}= 1$, m_{ik} is also equal to 1, for all i,j and k.
In the above matrix $m_{16}=1$ and $m_{61}=1$ but $m_{11}=0$. So this violates the transitivity condition.
Hence, R is not transitive.