1. Prove that \(\sum_{k=0}^{n} k * k! = (n + 1)! - 1 \).

Using Mathematical Induction to prove the statement.
Let \(P(n) \) be the statement that \(\sum_{k=0}^{n} k * k! = (n + 1)! - 1 \).

Basis Step (\(P(0) \)):
LHS: \(\sum_{k=0}^{0} k * k! = 0 * 0! = 0 \)
RHS: \((0+1)! - 1 = 1! - 1 = 0 \)
\(P(0) \) is true.

Inductive Step:
Assume \(P(m) \) is true. So \(\sum_{k=0}^{m} k * k! = (m + 1)! - 1 \).

Now we have to prove \(P(m+1) \) is true.
We have to prove \(\sum_{k=0}^{m+1} k * k! = (m + 2)! - 1 \).

LHS: \(\sum_{k=0}^{m+1} k * k! = \sum_{k=0}^{m} k * k! + (m+1) * (m+1)! \)
\(= (m+1)! - 1 + (m+1) * (m+1)! \)
\(= (m+1)! + (m+1)! - 1 \)
\(= (m+2)! - 1 \)
\(= \text{RHS} \)

Hence we have proven that if \(P(m) \) is true \(P(m+1) \) is true.
The given statement is proved.

2. Prove that \(\sum_{k=1}^{n} \frac{1}{k*(k+1)} = \frac{n}{n+1} \).

Using Mathematical Induction to prove the statement.
Let \(P(n) \) be the statement that \(\sum_{k=1}^{n} \frac{1}{k*(k+1)} = \frac{n}{n+1} \).

Basis Step (\(P(1) \)):
LHS: \(\sum_{k=1}^{1} \frac{1}{k*(k+1)} = 1/(1*2) = 1/2 \)
RHS: \(1/(1+2) = 1/2 \)
P(0) is true.

Inductive Step:
Assume P(m) is true. So \[\sum_{k=1}^{m} \frac{1}{k(k+1)} = \frac{m}{m+1}. \]

Now we have to prove P(m+1) is true.
We have to prove \[\sum_{k=1}^{m+1} \frac{1}{k(k+1)} = \frac{m+1}{m+2}. \]

LHS:
\[\sum_{k=1}^{m+1} \frac{1}{k(k+1)} = \sum_{k=1}^{m} \frac{1}{k(k+1)} + \frac{1}{(m+1)((m+1)+1)} \]
\[= \sum_{k=1}^{m} \frac{1}{k(k+1)} + \frac{1}{(m+1)(m+2)} \]
\[= \frac{m}{m+1} + \frac{1}{(m+1)(m+2)} \]
\[= \frac{m(m+2)+1}{(m+1)(m+2)} \]
\[= \frac{m+1}{m+2} \]
Hence we have proven that if P(m) is true P(m+1) is true.
The given statement is proved.

3. Prove that \(n > 6 \rightarrow 3^n < n! \)

Using Mathematical Induction to prove the statement.
Let P(n) be the statement that \(n > 6 \rightarrow 3^n < n! \)

Basis Step (P(7)):
For n=7, 7>6 and \(3^7 = 2187 < 7!(= 5040) \) P(7) is true.

Inductive Step:
Assume P(m) is true where \(m > 6 \). So \(3^m < m! \)

Now we have to prove P(m+1) is true.
m+1 is also greater than 6.
\[3^{m+1} \]
\[= 3^m * 3 \]
We know that \(3^m < m! \) and \(3 < m + 1 \). So
\[3^m * 3 < m! * (m + 1) \]
So \(3^{m+1} < m! * (m + 1) \) which means \(3^{m+1} < (m + 1)! \)
m + 1 > 6. So \(3^{m+1} < (m + 1)! \)

Hence we have proven that if P(m) is true P(m+1) is true.
The given statement is proved.

4. Prove that if \(A_0, A_1, A_2...A_{n-1} \) and B are sets then \(\cap A_i \cup B = (A_0 \cup B) \cap (A_1 \cup B) \cap \cap (A_{n-1} \cup B) \).
Using Mathematical Induction to prove the statement. Let $P(n)$ be the statement that if $A_0, A_1, A_2, ..., A_{n-1}$ and B are sets then $\bigcap \ A_i \cup B = (A_0 \cup B) \cap (A_1 \cup B) \cap ... \cap (A_{n-1} \cup B)$.

Basis Step ($P(2)$):
A_0, A_1 and B are sets
LHS: $\bigcap \ A_i \cup B$
$= (A_0 \cap A_1) \cup B$
$= (A_0 \cup B) \cap (A_1 \cup B)$ (By using Distributive law of sets)
=RHS
$P(2)$ is proved

Inductive Step:
Assume $P(m)$ is true. So $A_0, A_1, A_2, ..., A_{m-1}$ and B are sets and $\bigcap A_i \cup B = (A_0 \cup B) \cap (A_1 \cup B) \cap ... \cap (A_{m-1} \cup B)$.

Now we have to prove $P(m+1)$ is true.
Let Y be the set $A_0 \cap A_1 \cap ... \cap A_{m-1}$
\[\bigcap A_i \cup B \]
$= (A_0 \cap A_1 \cap ... \cap A_{m-1} \cap A_m) \cup B$
$= (Y \cap A_m) \cup B$
$= (Y \cup B) \cap (A_m \cup B)$
$= ((A_0 \cap A_1 \cap ... \cap A_{m-1}) \cup B) \cap (A_m \cup B)$
$= (A_0 \cup B) \cap (A_1 \cup B) \cap ... \cap (A_{m-1} \cup B) \cap (A_m \cup B)$

So $P(m+1)$ is true.
Hence we have proven that if $P(m)$ is true $P(m+1)$ is true.
The given statement is proved.