1. Consider matrix M_0 below:

(a) List the ordered pairs in the relation R_0 on $S = \{1, 2, 3, 4\}$
- $\{(1,1), (1,2), (2,1), (2,2), (3,3), (3,4), (4,3), (4,4)\}$

(b) Draw the undirected graph $G_0 = (S, R_0)$

(c) Is G_0 connected or disconnected?
Disconnected

(d) What are the connected components of G_0?
- $\{1, 2\}$ and $\{3, 4\}$

(e) How many paths of length 3 are between 1 and 2?
- 4

(f) Does G_0 have a Euler path? If so, find it. If not, why not?
- No G_0 doesn’t have a Euler path because it is not connected.

(g) Does G_0 have a Euler cycle? If so, find it. If not, why not?
- No G_0 doesn’t have a Euler cycle because it is not connected.

(h) Does G_0 have a Hamilton path? If so, find it. If not, list the minimum edges added to G_0 to create one.
- No G_0 doesn’t have a Hamilton path. One edge needs to be added to create a Hamilton path. The edge that needs to be added can be either one of $(1,3),(2,4),(1,4)$ and $(2,3)$.

(h) Does G_0 have a Hamilton cycle? If so, find it. If not, list the minimum edges added to G_0 to create one.
- No G_0 doesn’t have a Hamilton cycle. Two edges needs to be added to create a Hamilton cycle. The edges that needs to be added can be either $\{(1,3),(2,4)\}$ or $\{(1,4),(2,3)\}$.
2. Consider matrix M_1 below:

(a) List the ordered pairs in the relation R_1 on $S = \{1, 2, 3, 4, 5\}$
- $\{(1, 1), (1, 3), (1, 4), (1, 5), (2, 1), (2, 3), (3, 1), (3, 2), (4, 1), (4, 5), (5, 1), (5, 4)\}$

(b) Draw the undirected graph $G_1 = (S, R_1)$

(c) Is G_1 connected or disconnected?
- Connected

(d) What are the connected components of G_1?
- G_1 itself is a connected component of G_1.

(e) How many paths of length 3 are between 1 and 2?
- 5

(f) Does G_1 have a Euler path? If so, find it. If not, why not? - Yes G_1 does have a Euler path. The euler path is 1-2-3-1-4-5-1

(g) Does G_1 have a Euler cycle? If so, find it. If not, why not? - Yes G_1 does have a Euler cycle. The euler cycle is 1-2-3-1-4-5-1

(h) Does G_1 have a Hamilton path? If so, find it. If not, list the minimum edges added to G_1 to create one.
- Yes, G_1 does have a Hamilton path. It is: 2-3-1-4-5

(h) Does G_1 have a Hamilton cycle? If so, find it. If not, list the minimum edges added to G_1 to create one.
- No G_1 doesn’t have a Hamilton cycle. One edge is to be added to G_1 to create a Hamilton path. The edge to be added is (3,4) or (2,5) or (2,4) or (3,5)