CSI 2350 Discrete Mathematics

Dr. Greg Speegle

Spring 2019
Section 1

Binary, Octal and Hex
Overview

- “Normal” numbers are base 10 (0,1,2,3,4,5,6,7,8,9)
- Base indicates the number of digits
- Any integer can be a base
 - Base 2 - (0,1)
 - Base 8 (octal) - (0,1,2,3,4,5,6,7)
 - Base 16 (hexadecimal or hex) - (0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F)
Place Value

- Representing values greater than base requires place value
- Let b represent the base
- Two digit number $xy = x \cdot b^1 + y \cdot b^0$
- Three digit number $xyz = x \cdot b^2 + y \cdot b^1 + z \cdot b^0$
- k digit number
 $$x_{k-1}x_{k-2}x_{k-3} \ldots x_0 = x_{k-1} \cdot b^{k-1} + x_{k-2} \cdot b^{k-2} + \ldots + x_0 \cdot b^0$$
- Examples:
 - $22_{10} = 2 \cdot 10 + 2 \cdot 1 = 22$
 - $22_8 = 2 \cdot 8 + 2 \cdot 1 = 18_{10}$
 - $22_{16} = 2 \cdot 16 + 2 \cdot 1 = 34_{10}$
Conversion

- Converting to base 10 uses place value
- Converting from base 10 uses algorithm
 - `Convert(n, b)`
 - `answer = ""`
 - `while n > 0`
 - `prepend n % b to answer`
 - `n ← n / b`
 - `return answer`
- Note that `n % b` can be non-digit
- Examples on board
Conversion Powers of Base

- Special case conversion to/from base b to base b^k
- Consider base 9 and base 3.
- Base 9 has 9 digits - 0,1,2,3,4,5,6,7,8.
- Two digits in base 3 has 9 values 00,01,02,10,11,12,20,21,22
- 1-1 correspondence of values
- Base 8 has 8 digits. Three digits in base 2 have 8 values.
- Convert each digit in base b^k into k digits in base b
- Convert k digits in base b (add leading zeros if needed) to one digit in base b^k
- Examples on board
Section 2

Propositional Logic
Propositional Logic

- A *proposition* is an expression which is true or false
- A statement is true if it is always true. Otherwise, it is false.
- Examples:
 - This class is CSI 2350. (true)
 - My name is Inigo Montoya. (false)
 - CSI 2350 is the best class at Baylor. (not a proposition)
- Use variables (often p and q) to represent statements
- If p is true, the negation ($\neg p$) is false.
- If p is false, the negation ($\neg p$) is true.
Propositional Statements

- The *conjunction* (\land) of two statements is true, both statements are true.
- The *disjunction* (\lor) of two statements is true if either (or both) statements are true.
- Examples:
 - Let p be “This class is CSI 2350”
 - Let q be “My name is Inigo Montoya”
 - $p \land q = \text{false}$
 - $p \lor q = \text{true}$
Implication

- An *implication* \(p \rightarrow q \) represents the statement “if \(p \) is true then \(q \) is true”
- Note: It **DOES NOT** represent the statement “if \(p \) is false, then \(q \) is false”
- An implication is true UNLESS when \(p \) is true, \(q \) is false
- Examples:
 - Let \(p \) be the statement, “\(n \) is even”
 - Let \(q \) be the statement, “\(n \) is odd”
 - Let \(r \) be the statement, “\(2n \) is even”
 - \(p \rightarrow r \) is true
 - \(q \rightarrow r \) is true
 - \(p \rightarrow q \) is false
 - \(q \rightarrow p \) is false
 - \(r \rightarrow p \) is false
- Equivalent to \(\neg p \lor q \)
Truth Tables

- Columns are propositions and propositional statements
- One row for every possible truth value of propositions

<table>
<thead>
<tr>
<th>p</th>
<th>q</th>
<th>$p \rightarrow q$</th>
<th>$q \rightarrow p$</th>
<th>$p \rightarrow q \land q \rightarrow p$</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>F</td>
<td>T</td>
<td>F</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>T</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
</tbody>
</table>

- $p \rightarrow q \land q \rightarrow p$ is called a biconditional and is represented as $p \leftrightarrow q$
- All values true, called tautology
- All values false, called contradiction
Knights and Knaves

- Logic puzzle that can be solved with truth tables
- In the land of knights and knaves, knights always tell the truth and knaves always lie.
- Example:
 - A says, "B is a knight." B says, "2=2=5".
 - B must be a knave
 - Therefore, A must also be a knave
 - See table below. Let p be "A is a knight." Let q be "B is a knight."

<table>
<thead>
<tr>
<th>p</th>
<th>q</th>
<th>$2 + 2 = 5$</th>
<th>(r) $q \leftrightarrow 2 + 2 = 5$</th>
<th>(s) $p \leftrightarrow q$</th>
<th>$r \land s$</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>T</td>
<td>F</td>
<td>F</td>
<td>T</td>
<td>F</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>F</td>
<td>T</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>F</td>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
</tbody>
</table>
Knights and Knaves Explained

- Translate “A says p” into prepositional statements
- If A is a knight, then p must be true
- If A is a knave, then p must be false
- $A \leftrightarrow p$ is equivalent
- Example:
 - A says, “We’re both knaves.” B says, “No, we’re not.”
 - A is a knave and B is a knight.

<table>
<thead>
<tr>
<th></th>
<th>(r)</th>
<th>(s)</th>
<th>(t)</th>
<th>(u)</th>
</tr>
</thead>
<tbody>
<tr>
<td>p</td>
<td>q</td>
<td>$\neg p \land \neg q$</td>
<td>$p \leftrightarrow r$</td>
<td>$\neg (\neg p \land \neg q)$</td>
</tr>
<tr>
<td>T</td>
<td>T</td>
<td>F</td>
<td>F</td>
<td>T</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>T</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>F</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>T</td>
<td>F</td>
<td>F</td>
</tr>
</tbody>
</table>
Section 3

Logical Equivalence and Sets
Truth Tables and DNF

- **Disjunctive normal form (DNF)** is $C_0 \lor C_1 \lor \ldots \lor C_{k-1}$ where each C_i is of the form $p \land q \land \ldots \land r$
- Given a truth table, the DNF can be generated by creating conjunct for each true result
- “Consider 3 people where exactly one is a knave.”
- $P = (p \land q \land \neg r) \lor (p \land \neg q \land r) \lor (\neg p \land q \land r)$

<table>
<thead>
<tr>
<th>p</th>
<th>q</th>
<th>r</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>T</td>
<td>T</td>
<td>F</td>
</tr>
<tr>
<td>T</td>
<td>T</td>
<td>F</td>
<td>T</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>T</td>
<td>F</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
</tbody>
</table>
Truth Tables and CNF

- **Conjunctive normal form (CNF)** is $D_0 \land D_1 \land \ldots \land D_{k-1}$ where each D_i is of the form $p \lor q \lor \ldots \lor r$.
- No easy way to go directly from CNF to truth table or vice versa.
- $Q = (\neg p \lor \neg q \lor \neg r) \land (p \lor q) \land (p \lor r) \land (q \lor r)$

<table>
<thead>
<tr>
<th>p</th>
<th>q</th>
<th>r</th>
<th>$\neg p \lor \neg q \lor \neg r$</th>
<th>$p \lor q$</th>
<th>$p \lor r$</th>
<th>$q \lor r$</th>
<th>Q</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>T</td>
<td>T</td>
<td>F</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>F</td>
</tr>
<tr>
<td>T</td>
<td>T</td>
<td>F</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>F</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>F</td>
<td>T</td>
<td>T</td>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>T</td>
<td>T</td>
<td>F</td>
<td>T</td>
<td>T</td>
<td>F</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>F</td>
<td>T</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
</tbody>
</table>
Logical Equivalence

- Two propositions with the same truth table are equivalent: \(P \equiv Q \)
- \(P \leftrightarrow Q \) is a tautology
- Consider \(\neg(p \lor q) \equiv (\neg p \land \neg q) \) (DeMorgan’s Law)

<p>| | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>(p)</td>
<td>(q)</td>
<td>(p \lor q)</td>
<td>(\neg(p \lor q))</td>
<td>(\neg p \land \neg q)</td>
<td>(P \leftrightarrow Q)</td>
<td></td>
</tr>
<tr>
<td>T</td>
<td>T</td>
<td>T</td>
<td>F</td>
<td>F</td>
<td>T</td>
<td></td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>T</td>
<td>F</td>
<td>F</td>
<td>T</td>
<td></td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>T</td>
<td>F</td>
<td>F</td>
<td>T</td>
<td></td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>F</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td></td>
</tr>
</tbody>
</table>
Logical Equivalences

- $\neg(p \land q) \equiv (\neg p \lor \neg q)$ (DeMorgan’s Law)
- $\neg(\neg p) \equiv p$
- $p \lor (q \land r) \equiv (p \lor q) \land (p \lor r)$ (Distribution Law)
- $p \land (q \lor r) \equiv (p \land q) \lor (p \land r)$ (Distribution Law)
- $p \lor (p \land q) \equiv p$ (Absorption Law)

<table>
<thead>
<tr>
<th>p</th>
<th>q</th>
<th>r</th>
<th>$p \lor (q \land r)$</th>
<th>$p \lor q$</th>
<th>$p \lor r$</th>
<th>$(p \lor q) \land (p \lor r)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>T</td>
<td>T</td>
<td>F</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>F</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>F</td>
<td>T</td>
<td>T</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>T</td>
<td>F</td>
<td>F</td>
<td>T</td>
<td>F</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
</tbody>
</table>
Deriving Equivalences

- Apply equivalences to derive new ones
- Equivalence is transitive (everything in chain is equivalent)
- Equivalence is associative \((p \equiv q \leftrightarrow q \equiv p)\)
- Show \(p \rightarrow q \equiv \neg q \rightarrow \neg p\)
- \(p \rightarrow q \equiv \neg p \lor q\) Definition implication
- \(\neg p \lor q \equiv q \lor \neg p\) Association
- \(q \lor \neg p \equiv \neg (\neg q) \lor \neg p\) Double negation
- \(\neg (\neg q) \lor \neg p \equiv \neg q \rightarrow \neg p\) Definition implication
Satisfiability

- A predicate is *satisfiable* if there exists an assignment of truth values such that the predicate evaluates to true. Otherwise, it is unsatisfiable.

- $p \land \neg q$ is satisfiable when $p = T$ and $q = F$

- $p \rightarrow \neg p$ is satisfiable when $p = F$

- $p \land (p \rightarrow \neg p)$ is unsatisfiable.

- A predicate in DNF is easy to determine if satisfiable. Check each conjunct. If no negated and unnegated same variable, then satisfiable.

- A predicate in CNF has no known efficient algorithm to determine if satisfiable (check all truth table)

- Fundamental problem in computer science $P = NP$
Introduction to Sets

- Collection of unordered distinct elements
- $S = \{A, -3, \text{“orange”}\}$
- Size (or cardinality is number of elements $|S| = 3$
- \mathbb{N} is the set of all natural numbers
- \mathbb{Z} is the set of all integers
- \mathbb{Z}^+ is the set of all positive integers
- \mathbb{Q} is the set of all rational numbers
- \mathbb{R} is the set of all real numbers (others in text)
- Elements can be anything, even sets
- $S = \{\mathbb{N}, \mathbb{Q}, \mathbb{R}, \mathbb{Z}\}$
- $|S| = 4$
- Empty set (\emptyset) contains no elements
Subsets

- $S \subset T$ iff all elements in S are in T
- $S = T$ iff $S \subset T \land T \subset S$
- $\emptyset \subset S$ for any set S
- Proper and improper subsets
- Power set 2^S is the set of all subsets of S
- $2^\emptyset = \{\emptyset\}$. Therefore, $|2^\emptyset| = 1$
- Let $S = \{A, B\}$. $2^S = \{\emptyset, \{A\}, \{B\}, S\}$.
- $|2^S| = 2^{|S|}$.
Section 4

Sets and Quantification
Logical Predicates

- Statements can involve variables
- Let $P(x)$ be $x > 3$
- A *predicate* evaluates at statement with a particular value
- $P(4)$ is true. $P(2)$ is false.
- Quantifiers can be used to evaluate predicate over a set
- Universal quantification (for all – \forall) is true if true for all elements of set
- Existential quantification (there exists – \exists) is true if true for any element of set
- Let $S = \{2, 4, 6\}$.
- $\forall x \in S, P(x)$ is false.
- $\exists x \in S, P(x)$ is true
Quantifier Properties

- Two predicates are *equivalent* iff they hold the same truth value for any predicate and domain.
- \(\forall x(P(x) \land Q(x)) \equiv \forall x(P(x) \land \forall x(Q(x))) \)
- \(\neg \forall x P(x) \equiv \exists x(\neg P(x)) \)
- \(\neg \exists x P(x) \equiv \forall x(\neg P(x)) \)
- Order is important! Evaluate left to right.
- \(\forall \) tries to make statement false.
- \(\exists \) tries to make statement true.
- \(\forall x \in \mathbb{Z}, \exists y \in \mathbb{Z}, x + y = 0 \) is true
- \(\exists x \in \mathbb{Z}, \forall y \in \mathbb{Z}, x + y = 0 \) is false
- \(\exists x \in \mathbb{Z}, \forall y \in \mathbb{Z}, xy = 0 \) is true
Sets and Quantifiers

- Set builder notation.
 - \(S = \{ x \in \mathbb{Z}^+ | P(x) \} \) is the set of all positive integers such that \(P(x) \) is true.
 - \(S = \{ x \in \mathbb{Z}^+ | x < 3 \} = \{1, 2\} \)
 - \(S = \{ x \in \mathbb{Z}^+ | x > 3 \} \). \(T = \{ x \in S | x < 6 \} \). \(T = \{4, 5\} \)
- \(S \subset T \) iff \(\forall x \in S, x \in T \)
- Union: \(S \cup T = \{ x | x \in S \lor x \in T \} \)
- Intersection: \(S \cap T = \{ x | x \in S \land x \in T \} \)
- Difference: \(S - T = \{ x | x \in S \land x \notin T \} \)
- Complement: \(\bar{S} = \{ x | x \notin S \} \)
- A universal set, \(U \) contains all possible values.
 - \(\bar{S} = U - S \)
 - \(S - T = S \cap \bar{T} = S \cap (U - T) = (S \cap U) - (S \cap T) = S - (S \cap T) \)
Proofs with Sets

- Prove $S - T = S \cap \overline{T}$
- Part 1. $S - T \subset S \cap \overline{T}$
 - Let $x \in S - T$ (if no x exists, $S - T = \emptyset$ and done)
 - $x \in S \land x \notin T$ Definition of difference
 - $x \in \overline{T}$ Definition of complement.
 - $x \in S \cap \overline{T}$ Definition of intersection
- Part 2. $S \cap \overline{T} \subset S - T$
 - Let $x \in S \cap \overline{T}$ (if no x exists, $S \cap \overline{T} = \emptyset$ and done)
 - $x \in S \land x \in \overline{T}$ Definition intersection
 - $x \notin T$ Definition of complement
 - $x \in S - T$ Definition of difference
- QED
Generalized Set Properties

- $A \cup B = B \cup A$ and $A \cap B = B \cap A$
- $(A \cup B) \cup C = A \cup (B \cup C)$ and $(A \cap B) \cap C = A \cap (B \cap C)$
- Let $A_0, A_1, \ldots, A_{k-1}$ be sets.
 - $\bigcup_{i=0}^{k-1} = A_0 \cup A_1 \cup \ldots \cup A_{k-1}$
 - $\bigcap_{i=0}^{k-1} = A_0 \cap A_1 \cap \ldots \cap A_{k-1}$
Section 5

Proofs
Proof Techniques

- A proof is a convincing argument.
- Set of premises (things which are true at the start)
- Set of logical statements (which must be valid)
- Set of conclusions (which are now known to be true)
- Example:
 - Prove \(S - T = S - (S \cap T) \)
 - Premise: \(S \) and \(T \) are sets
 - Logical Statements: Set identities
 - Set of conclusions: \(x \in S - T \iff x \in S - (S \cap T) \)
Example Proof

- Proof $S - T = S - (S \cap T)$:
 - There are two items to show. (1) $x \in S - T \rightarrow x \in S - (S \cap T)$ and (2) $x \notin S - T \rightarrow x \notin S - (S \cap T)$
 - Case 1: $x \in S - T \rightarrow x \in S - (S \cap T)$
 - $x \in S - T \rightarrow x \in S \land x \notin T$
 - $\therefore x \notin S \cap T$
 - $\therefore x \in S - (S \cap T)$
 - Case 2: $x \notin S - T \rightarrow x \notin S - (S \cap T)$
 - $x \notin S - T \rightarrow x \notin S - (S \cap T) \equiv x \in S - (S \cap T) \rightarrow x \in S - T$ (why?)
 - $x \in S - (S \cap T) \rightarrow x \in S \land x \notin (S \cap T)$
 - $\therefore x \notin S \land (x \notin S \lor x \notin T)$
 - $\therefore (x \in S \land x \notin S) \lor (x \in S \land x \notin T)$
 - $\therefore x \in S \land x \notin T$
 - $\therefore x \in S - T$
Valid Logical Statements

- $p, p \rightarrow q, \therefore q$ - modus ponens
- $\neg q, p \rightarrow q, \therefore \neg p$ - modus tollens
- $p \rightarrow q, q \rightarrow r, \therefore p \rightarrow r$ - Hypothetical syllogism
- $p \lor q, \neg p, \therefore q$ - Disjunctive syllogism
- $\forall x P(x), \therefore P(c)$ - Universal instantiation
- $P(c)$ for an arbitrary $c, \therefore \forall x P(x)$ - Universal generalization
Proof by Contradiction

- Assume system is logically consistent
- Therefore, either p or $\neg p$ can be true, but not both
- Start by assuming $\neg p$ is true
- Often p is implication ($p \rightarrow q$)
- Negation of implication $\neg(\neg p \lor q) \equiv p \land \neg q$
- Apply logically sound statements
- Reach clearly false statement
- Therefore, $\neg p$ cannot be true, so p must be true
Contradiction Proof Example

- Prove that if \(n \in \mathbb{Z} \land n^3 + 5 \) is odd, then \(n \) is even.
- \(n \in \mathbb{Z} \land (n^3 + 5) \mod 2 = 1 \rightarrow n \mod 2 = 0 \)
- Assume not. Therefore \((n^3 + 5) \mod 2 = 1 \land n \mod 2 = 1\)
- \(\therefore \exists k \in \mathbb{Z}, n = 2k + 1 \)
- \(\therefore n^3 + 5 = 8k^3 + 12k^2 + 6k + 1 + 5 \)
- \(8k^3 \) is even, \(12k^2 \) is even, \(6k \) is even, and \(6 \) is even.
- Since the sum of two even numbers is even, \(8k^3 + 12k^2 \) and \(6k + 6 \) are even.
- Similarly, \((8k^3 + 12k^2) + (6k + 6) \) is even.
- Since an integer cannot be both even and odd, we have a contradiction!
Counter Example

- Best way to prove something false
- Theorem: \(\forall x \in \mathbb{Z}, x^2 > x \)
- Counter example: Let \(x = 0 \). \(x^2 = 0 = x \), so theorem is false.
- Theorem: \(\exists y, \forall x, xy = 1 \)
- Consider \(x \) and \(x + 1 \).
- \(xy = 1 \) and \(y(x + 1) = xy + y = 1 \)
- \(\therefore 1 + y = 1 \), so \(y = 0 \)
- \(0x = 0 \neq 1 \)
Section 6

Sets, Tuples and Relations
A tuple is an ordered collection of elements. It may or may not contain duplicates. Similar to an array.

Each item in a tuple can be accessed by its location.

Standard notation not as common. We will use parenthesis to denote a tuple and brackets to note the index of an element.

Examples:

- $t_0 = (1, 2, 3, 1, 2, 3)$
- $t_1 = ("orange", \emptyset, 42)$
- $t_2 = (\{0, 1\}, (0, 0))$

- t_0 is a 6-tuple $t_0[0] = 1$
- t_1 is a 3-tuple (also called a triple) where $t_1[1] = \emptyset$.
- t_2 is a 2-tuple, usually called an ordered pair, where $t_2[1] = (0, 0)$ and $t_2[1][1] = 0$
Let \(S \) and \(T \) be sets. The *cross product* or *Cartesian product* \(S \times T \) is a set of ordered pairs where the first element is from \(S \) and the second element is from \(T \). All possible combinations are in the cross product.

Example

- Let \(S = \{ a, b, c \} \).
- Let \(T = \{ 1, 2 \} \).
- \(S \times T = \{ (a, 1), (a, 2), (b, 1), (b, 2), (c, 1), (c, 2) \} \)

Note that \((1, a) \notin S \times T \)

\[|S \times T| = |S| \times |T| \]

Taking the cross product of \(k \) sets generates a \(k \)-tuple where the elements are from the corresponding sets.
Relations

- A *Relation* is a subset of the Cartesian product of an ordered collection of sets such that each tuple satisfies a predicate P.

Example:

- Let $S_0 = \{1, 2, 3\}$, $S_1 = \{"a", "b", "c"\}$, $S_2 = \{0, 3\}$.
- Let $R_0 = \{(a, b, c)| a \in S_0, b \in S_1, c \in S_2, b = "b" \land a \geq c\}$
- $R_0 = \{(1, "b", 0), (2, "b", 0), (3, "b", 0), (3, "b", 3)\}$
- Let $R_1 = \{(a, b, c)| a \in S_0, b \in S_1, c \in S_2, a = c\}$
- $R_1 = \{(3, "a", 3), (3, "b", 3), (3, "c", 3)\}$
- Since relations are sets, set operators can be applied. However, the result may not be a relation.

- $R_0 \cup S_0 = \{(1, "b", 0), (2, "b", 0), (3, "b", 0), 1, 2, 3\}$.
- Set operations on two relations over the same ordered collection of sets, is a relation.

- $R_0 \cap R_1 = \{(3, "b", 3)\}$
Properties of Relations

- Relations between a set and itself ($R \subseteq A \times A$) have special properties
- **Reflexive**: $\forall a \in A, R(a, a)$
 - $R = \{(z_0, z_1) | z_0, z_1 \in \mathbb{Z}, z_0 \leq z_1\}$ is reflexive
 - Proof: $k \leq k$ is true for all integers.
 - $R = \{(z_0, z_1) | z_0, z_1 \in \mathbb{Z}, z_0 < z_1\}$ is NOT reflexive
 - Counterexample: $3 \in \mathbb{Z}, (3, 3) \notin R$
- **Symmetric**: $\forall a, b \in A, R(a, b) \rightarrow R(b, a)$
 - $R = \{(z_0, z_1) | z_0, z_1 \in \mathbb{Z}, z_0 \leq z_1\}$ is NOT symmetric
 - Counterexample: $3 < 7 \rightarrow (3, 7) \in R. 7 \not< 3, \therefore (7, 3) \notin R$
 - $R = \{(z_0, z_1) | z_0, z_1 \in \mathbb{Z}, z_0 = z_1\}$ is symmetric (and reflexive)
 - Proof (symmetric): Follows from commutative property of equality
 - Proof (reflexive): Follows from reflexive property of equality
 - $R = \{(z_0, z_1) | z_0, z_1 \in \mathbb{Z}, z_0 \text{ and } z_1 \text{ are relatively prime}\}$ is symmetric (and not reflexive)
 - Proof (symmetric): $\gcd(a, b) = \gcd(b, a)$
 - Counterexample (not reflexive): Consider 6. $\gcd(6, 6) > 1$
Properties of Relations

- **Antisymmetric (poorly named):**
 \[\forall a, b \in A, R(a, b) \wedge R(b, a) \rightarrow a = b \]
 - \(R = \{(z_0, z_1) | z_0, z_1 \in \mathbb{Z}, z_0 \leq z_1\} \) is antisymmetric
 - Proof: \(a \leq b \wedge b \leq a \rightarrow a = b \)
 - \(R = \{(z_0, z_1) | z_0, z_1 \in \mathbb{Z}, z_0 = z_1\} \) is antisymmetric
 - Proof: Follows from commutative property of equality
 - \(R = \{(z_0, z_1) | z_0, z_1 \in \mathbb{Z}, z_0 \text{ and } z_1 \text{ are relatively prime}\} \) is NOT antisymmetric
 - Counterexample: \(\gcd(5, 8) = 1, \gcd(8, 5) = 1, 5 \neq 8 \)

- **Transitive:** \(R(a, b) \wedge R(b, c) \rightarrow R(a, c) \)
 - \(R = \{(z_0, z_1) | z_0, z_1 \in \mathbb{Z}, z_0 \leq z_1\} \) is transitive
 - Proof: \(a \leq b \wedge b \leq c \rightarrow a \leq c \)
 - \(R = \{(z_0, z_1) | z_0, z_1 \in \mathbb{Z}, z_0 = z_1\} \) is transitive
 - Proof: Follows from the transitive property of equality
 - \(R = \{(z_0, z_1) | z_0, z_1 \in \mathbb{Z}, z_0 \text{ and } z_1 \text{ are relatively prime}\} \) is NOT transitive
 - Counterexample: \(\gcd(5, 8) = 1, \gcd(8, 15) = 1, \gcd(5, 15) = 5 \)
Compositions

- Let S, T and U be arbitrary sets.
- Let R_0 be a relation on (S, T) and R_1 be a relation on (T, U).
- The composition $R_C = R_1 \circ R_0$ is a relation on (S, U) such that $\forall (s, u) \in R_C, \exists (s, t) \in R_0 \land (t, u) \in R_1$.
- Example:
 1. $R_0 = \{(1, 1), (1, -1), (4, 2), (4, -2)\}$
 2. $R_1 = \{(1, 0), (1, 2), (2, 1), (2, 3)\}$
 3. $R_1 \circ R_0 = \{(1, 0), (1, 2), (4, 1), (4, 3)\}$
- Not all elements in either relation must be used. Composition can be empty set.
- If relation is on single set, can take “powers” by composition.
- $R^1 = R.R^n = R^{n-1} \circ R$.
- Example: $A = \{1, 2, 3\}, R = \{(1, 2), (2, 3), (3, 1)\}$
- $R^2 = R \circ R = \{(1, 3), (2, 1), (3, 2)\}$
- $R^3 = R^2 \circ R = \{(1, 1), (2, 2), (3, 3)\}$
Section 7

Functions
A function is a relation over two sets such that the first element is unique.

\[f : A \to B = \{(a, b) | \forall t, t' \in f, t[0] = t'[0] \to t = t'\} \]

\[f(a) \in B. \cup_{a \in A} f(a) \subset B \text{ Also denoted } f(A) \subset B. \]

Examples: Let \(A, B = \mathbb{Z} \) and \(x \in \mathbb{Z} \)

- \(f(x) = x + 2 = \{(0, 2), (1, 3), (-1, 1) \ldots\} \)
- \(f(x) = x^2 = \{(0, 0), (1, 1), (-1, 1) \ldots\} \)
- \(f(x) = \sqrt{x} = \{(0, 0)(1, 1), (1, -1) \ldots\} \) NOT A FUNCTION!
Let $f : A \rightarrow B$, $f(a) = b$ and $g : A \rightarrow B$, $g(a) = b$

- A is the **domain** of f
- B is the **codomain** of f
- $\bigcup_{a \in A} f(a)$ is the **range** of f
- b is the **image** of a
- a is the **preimage** of b

Two functions $f = g$ if $f \subset g \land g \subset f$ and f, g have same domain and codomain.

- Let $B = \mathbb{R}$. Then $(f + g)(x) = f(x) + g(x)$ and $(fg)(x) = f(x)g(x)$
- Let $S \subset A$, $f(S) = \{x | \exists s \in S, (x = f(s))\}$
One-to-One and Onto

- A function is *one-to-one* or an *injection* iff
 \[f(a) = f(b) \rightarrow a = b. \]

- Note: \(|A| > |B|\) implies \(f \) is not 1-1

- Examples: \(f : A \rightarrow B, A = \{1, 2, 3\}, \)
 - \(B = \{1, 2, 3, 4\}, f(a) = a, f = \{(1, 1), (2, 2), (3, 3)\} \)
 - \(B = \{1, 2, 3, 4\} f(a) = \lceil a/2 \rceil, f = \{(1, 1), (2, 1), (3, 2)\} \) NOT 1-1

- A function is *onto* or an *surjection* iff \(\bigcup_{a \in A} f(a) = B \)

- Note \(|B| > |A|\) implies \(f \) is not onto

- Examples:
 - \(B = \{1, 2, 3\} f(a) = a \) onto and 1-1
 - \(B = \{1, 2, 3\} f(a) = \lceil a/2 \rceil, \) NOT onto

- A function is a *bijection* if it is 1-1 and onto
Function Inverse and Composition

- Given $f : A \rightarrow B, f^{-1} : B \rightarrow A = \{(b, a) | (a, b) \in f\}$
- f must be a bijection for f^{-1} to be a function
 - Not onto implies f^{-1} is undefined for some elements in domain
 - Not 1-1 implies $\exists x f^{-1}(x)$ is not unique
- Composition of functions same as composition of relations
- $f : A \rightarrow B, g : B \rightarrow C. (g \circ f)(x) = g(f(a))$
- Examples:
 - $f^{-1}(f(x)) = x$
 - $f(x) = 2x + 1. g(x) = x^2. g(f(x)) = 4x^2 + 4x + 1. f(g(x)) = 2x^2 + 1$
 - $f(x) = 1. g(x) = x + 1. g(f(x)) = 2. f(g(x)) = 1.$
Section 8

Matrices
Matrix Overview

- Given two k-tuples, A and B, provides a value for each element in $A \times B$
- Similar to relations with sets replaced by tuples and predicate replaced by value
- Each element in A corresponds to row in M
- Each element in B corresponds to column in M
- Example - Powers of numbers (Matrix M).
 $A = (1, 2, 3). B = (0, 1, 2, 3)$

$$M = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & 2 & 4 & 8 \\ 1 & 3 & 9 & 27 \end{bmatrix}$$

- m rows and n cols is $m \times n$ matrix (M is 3x4).
- $m=n$ is square matrix
- Element $M_{i,j}$ where i is row number and j is column number
Matrix Addition

- Requires M, N be same size
- $M + N = L \rightarrow \forall i, j L_{i,j} = M_{i,j} + N_{i,j}$

\[
\begin{bmatrix}
1 & 1 & 1 & 1 \\
2 & 1 & 2 & 4 \\
3 & 1 & 3 & 9 \\
\end{bmatrix} + \begin{bmatrix}
1 & 2 & 3 & 4 \\
5 & 6 & 7 & 8 \\
9 & 10 & 11 & 12 \\
\end{bmatrix} = \begin{bmatrix}
2 & 3 & 4 & 5 \\
7 & 7 & 9 & 12 \\
12 & 11 & 14 & 21 \\
\end{bmatrix}
\]
Matrix Multiplication

- Columns in \(M \) must equal rows in \(N \)
- \(M \) is \(m \times k \), \(N \) is \(k \times n \), \(L \) is \(m \times N \)
- \(L_{i,j} = \sum_{h=1}^{k} M_{i,h} \times N_{h,j} \)

\[
\begin{bmatrix}
1 & 1 & 1 & 1 \\
2 & 1 & 2 & 4 \\
3 & 1 & 3 & 9 \\
\end{bmatrix}
\times
\begin{bmatrix}
1 & 2 \\
5 & 6 \\
9 & 10 \\
11 & 12 \\
\end{bmatrix}
= \begin{bmatrix}
26 & 30 \\
69 & 78 \\
134 & 150 \\
\end{bmatrix}
\]

- Example:
 \(L_{2,2} = \sum_{h=1}^{4} M_{2,h} \times N_{h,2} = 2 \times 2 + 1 \times 6 + 2 \times 10 + 4 \times 12 = 78 \)

- Example:
 \(L_{1,2} = \sum_{h=1}^{4} M_{1,h} \times N_{h,2} = 1 \times 2 + 1 \times 6 + 1 \times 10 + 1 \times 12 = 30 \)

- NOT commutative (e.g., \(M \times N \neq N \times M \), see above)
Identity Matrix and Transposition

- Identity matrix (usually I)
 - Square
 - Diagonal values are 1; all other values are 0
 - $M \times I = I \times M = M$

- Transpose of $M = M^t$
 - $M^t_{i,j} = M_{j,i}$
 - M is symmetric if $M = M^t$ (note: must be square)

$$M = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 2 & 1 & 2 & 4 \\ 3 & 1 & 3 & 9 \end{bmatrix} \rightarrow M^t = \begin{bmatrix} 1 & 2 & 3 \\ 1 & 1 & 1 \\ 1 & 2 & 3 \\ 1 & 4 & 9 \end{bmatrix}$$
Matrix Powers

- Let M be a square $n \times n$ matrix.
- $M^0 = I$
- $M^1 = IM = M$
- $M^k = M^{k-1}M$

\[
M = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}, \quad M^0 = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \quad M^2 = \begin{bmatrix} 7 & 10 \\ 15 & 22 \end{bmatrix}, \quad M^3 = \begin{bmatrix} 37 & 54 \\ 81 & 118 \end{bmatrix}
\]
Boolean Matrices

- A matrix M such that all values are T(1) or F(0)
- Let M and N be boolean matrices. $M \lor N = L$ (join)
 \[L_{i,j} = M_{i,j} \lor N_{i,j} \]
- Let M and N be boolean matrices. $M \land N = L$ (meet)
 \[L_{i,j} = M_{i,j} \land N_{i,j} \]
- Matrix multiplication of boolean matrices is disjunction of conjuncts of terms
- M, N are boolean matrices. $M \otimes N = L$
- $L_{i,j} = \bigvee_{h=1}^{k} (M_{i,h} \land N_{h,j})$
- Example:

\[
M = \begin{bmatrix}
1 & 1 & 1 \\
0 & 1 & 0 \\
0 & 0 & 0
\end{bmatrix}, \quad N = \begin{bmatrix}
1 & 0 \\
0 & 1 \\
1 & 0
\end{bmatrix}, \quad L = \begin{bmatrix}
1 & 1 \\
0 & 1 \\
0 & 0
\end{bmatrix}
\]
Let A be an arbitrary set of k elements, and $R(A, A)$

Let A' be a k-tuple of the elements in A with an arbitrary order.

Let M be a boolean matrix over $A' \times A'$, such that $(a_i, a_j) \in R \iff M[i][j] = 1$

Example:
- Let A be a set of three volunteers
- $R(A, A) = \{(a, b)|a, b \in A, a \text{ “taller than” } b\}$
- Order elements in A by first name (alphabetical)
- M on board

Note: M is square. Ordering is same for columns and rows.
Properties of Relations with Matrices

Given $R(A, A)$ and M defined as before.

- If M main diagonal is all 1’s, R is reflexive.
- If $M = M^t$, R is symmetric.
- If $M \land M^t$ is all zero except the main diagonal, R is antisymmetric.
- If $\bigvee_{i=1}^k M^i = M$, R is transitive.
Section 9

Summations and Induction
Summations

- Add the terms in a sequence
- Uses Σ
- Examples:
 - $\sum_{j=1}^{n} j = \frac{n(n+1)}{2}$
 - $\sum_{j=1}^{n} j^2 = \frac{n(n+1)(2n+1)}{6}$
 - $\sum_{j=1}^{n} 2j + 3 = 2\sum_{j=1}^{n} j + \sum_{j=1}^{n} 3 = 2\frac{n(n+1)}{2} + 3n = n^2 + 4n$
 - $\sum_{j=0}^{n} ar^j = \frac{ar^{n+1} - a}{r - 1}[r \neq 1], (n+1)a[r = 1]$
 - Let $S = \{1, 2, 4, 8\}$ then $\sum_{x \in S} x = 1 + 2 + 4 + 8 = 15$
Double Summations

- Summation over two variables
- Inner and outer loop
- Examples:
 - $\sum_{i=1}^{4} \sum_{j=1}^{3} i \times j = 1 + 2 + 3 + 2 + 4 + 6 + 3 + 6 + 9 + 4 + 8 + 12 = 60$
 - $\sum_{i=1}^{4} \sum_{j=1}^{3} i \times j = \sum_{i=1}^{4} (i + 2i + 3i) = \sum_{i=1}^{4} 6i = 6 \times \sum_{i=1}^{4} i = 6 \times 10 = 60$
Induction

- Proof technique for showing infinite series is true
- Require incremental progress
- Basis – Initial step (usually very easy to show)
- Induction Hypothesis (IH) – Theorem is true for k elements
- NOTE! Have not proved IH is true. Just assuming it is.
- Show Theorem is true for $k + 1$ elements
- Therefore, initially true. Basis is now IH for next step. Now have IH for following step, etc.
Induction Example

- Summations “easily” shown by induction (proof simple; algebra can be tricky)
- Prove $\sum_{i=1}^{n} i^3 = (n(n + 1)/2)^2$
- Basis: $P(1)$. $1^3 = 1 = (1(2)/2)^2$
- IH: $\sum_{i=1}^{k} i^3 = (k(k + 1)/2)^2$
- Let $n = k + 1$.
- $\sum_{i=1}^{k+1} i^3 = \sum_{i=1}^{k} i^3 + (k + 1)^3$
- By IH, $\sum_{i=1}^{k+1} i^3 = (k(k + 1)/2)^2 + (k + 1)^3$
- $= (((k^2 + k)/2)^2 + k^3 + 3k^2 + 3k + 1$
- $= (k^4 + 2k^3 + k^2)/4 + k^3 + 3k^2 + 3k + 1$
- $= (k^4 + 2k^3 + k^2 + 4k^3 + 12k^2 + 12k + 4)/4$
- $= (k^4 + 6k^3 + 13k^2 + 12k + 4)/4$
- Note that $((k + 1)(k + 2)/2)^2 = ((k^2 + 3k + 2)/2)^2 = (k^4 + 3k^3 + 2k^2 + 3k^3 + 9k^2 + 6k + 2k^2 + 6k + 4)/4$
- $= (k^4 + 6k^3 + 13k^2 + 12k + 4)/4$
- So $\sum_{i=1}^{k+1} i^3 = ((k + 1)(k + 2)/2)^2$
Induction Example

- Prove $x \geq 4 \rightarrow x \geq 2 \cdot \log(x)$
 - Lemma: $x \geq 3 \rightarrow x^2 \geq 2x + 1$
 - Basis $P(3)$. $3^2 \geq 2 \cdot 3 + 1$
 - IH: $x = k \rightarrow k^2 \geq 2k + 1$
 - Let $x = k + 1$. $x^2 = k^2 + 2k + 1$.
 - $> 2k + 1 + 2k + 1$
 - $> 2k + 3$
 - $> 2(k + 1) + 1$
 - Basis: $P(4)$. $4 \geq 2 \cdot \log(4) = 4$
 - IH: $x = k \rightarrow x \geq 2 \cdot \log(x)$
 - Let $x = k + 1$.
 - By IH, $x \geq 2 \cdot \log(k) + 1$
 - $x \geq \log(k^2) + \log(2)$
 - $x \geq \log(2 \cdot k^2)$
 - $x > \log(k^2 + 2 \cdot k + 1)$
 - $x > \log((k + 1)^2) = 2 \cdot \log(k + 1) = 2 \cdot \log(x)$
Odd Man Pie Fights (from text)
 - People stand in yard at distinct distances
 - Throw pie at nearest neighbor
 - Odd number of participants ensures at least 1 person is not hit

Technique - Induct over n for $P(2n + 1)$

Basis: $n = 1, P(3)$. Let (a, b) be closest pair. Then a hits b and b hits a. c hits whoever is closest to c, but nobody hits c
Odd Man Out Proof (cont’d)

- IH: Assume theorem is true for \(n = k, P(2 \ast k + 1) \).
- Let \(n = k + 1 \). Therefore, want to show \(P(2 \ast (k + 1) + 1) \) or \(P(2 \ast k + 3) \).
- Let \((a, b)\) be the closest pair (all distances unique implies least element exists).
- Therefore, \(a \) hits \(b \) and \(b \) hits \(a \).
- Case I:
 - Someone else throws a pie at \(a \) or \(b \)
 - Therefore, at least 3 pies thrown at \(a \) and \(b \), leaving at most \(2k \) pies for \(2k + 1 \) people.
- Case II:
 - Nobody throws a pie at \(a \) or \(b \)
 - Now \(2 \ast (k + 1) \) people remain with pies.
 - By IH, at least one is not hit.
Induction Example

- Number of elements in 2^S (from text)
- Show $|2^S| = 2^{\left|S\right|}$
- Basis: \emptyset. The only subset of \emptyset is itself. $|2^S| = 1 = 2^0$
- IH: $|S| = k \rightarrow |2^S| = 2^k$
- Let $|T| = k + 1$. $T = S \cup \{a\}$ such that $S = T - \{a\}$.
- Let $X \subseteq S$. Therefore, $X \subseteq T$ and $X \cup \{a\} \subseteq T$.
- By IH, there are 2^k such subsets of S, and $2 \times 2^k = 2^{k+1}$ subsets of T.
Section 10

Recursion and Strong Induction
Strong (Complete) Induction

- IH is not just that \(P(k) \) is true, but
 \(P(1) \land P(2) \land P(3) \ldots \land P(k) \) is true
- Equivalent to Induction, but sometimes easier to use
- Example: Prove that every positive integer \(n \) can be written as a sum of distinct powers of 2
- Basis: \(n = 1. \ 2^0 = 1 = n \)
- IH: \(\forall n \leq k, n \) can be written as a sum of distinct powers of 2
- Let \(n = k + 1 \)
- Case I:
 - Let \(n \) be odd.
 - Since \(n \) is odd, \(k \) must be even.
 - By IH, let \(S \) be representation of the sum for \(k \)
 - Therefore, \(2^0 \) cannot be in \(S \)
 - Therefore \(n = \text{(representation for } k) + 2^0 \).
Case II

- Let n be even.
- Therefore, $n/2$ is an integer such that $n/2 \leq k$.
- By IH, let S be representation of the sum for $n/2$
- Multiplying S by 2 increases each exponent by 1. (DPMA)
- Therefore, S with each exponent increased by 1 is n

Compare with normal induction

Case I is the same

Case II is more difficult
Proof?

- $n \in \mathbb{N} \rightarrow 5n = 0$ (include $0 \in \mathbb{N}$)
- Basis: $5 \cdot 0 = 0$
- IH For all $i < k$, $5 \cdot i = 0$
- Prove for $k + 1$
- $k + 1 = i + j$ where i and j are less than k
- $5 \cdot (k + 1) = 5(i + j) = 5i + 5j = 0 + 0 = 0$
- QED
- Any problems?
Function Recursion

- Compute values of a function based on previous values in the function
- Specify the value at 0 (or first k values)
- Provide rule for $f(n)$ based on lower values of n
- Factorial: $f(0) = 1. \forall n, n > 0 \rightarrow f(n) = n \times f(n - 1)$.
- Fibonacci:
 $f(0) = 0, f(1) = 1. \forall n, n > 1 \rightarrow f(n) = f(n - 1) + f(n - 2)$
- Paradox:
 $f(0) = 0.5. \forall n, n > 1 \rightarrow f(n) = (1 - f(n - 1))/2 + f(n - 1)$
Set Recursion

- Compute elements in a set based on previous elements in the set
- Provide rule for initial elements. Provide rule for adding new elements.

Initial - $1 \in S$. Step - $s, t \in S \rightarrow s + t \in S$ Prove $S = \mathbb{Z}^+$
(Note! s and t do not have to be unique!):

- Clearly, $S \subseteq \mathbb{Z}^+$
- Basis: $1 \in S$ by definition of S
- IH: $k \in S$.
- Since k and 1 are in S, by rule, $k + 1 \in S$

Transitive Closure: Let $R(A, A)$ be a relation. The transitive closure of R^* (R plus all elements in $A \times A$ needed to make R transitive) is:

- Initial $(a, b) \in R \rightarrow (a, b) \in R^*$
- Step - $(a, b), (b, c) \in R \rightarrow (a, c) \in R^*$
Recursive Algorithm

- Compute results using previously computed results
- Provide rule for terminal case. Provide rule for recursive call.
- Example: factorial
 - fact(n)
 - if $n \leq 0$ return 1
 - else return $n \cdot \text{fact}(n - 1)$
- Example: gcd
 - gcd(a,b)
 - if $a = 0$ return b
 - return gcd(b%a,a)
Recursive Algorithm Example

- Example: fibonacci (Problem?)
 - fib(a)
 - if a=0 return 0
 - if a=1 return 1
 - return fib(a-1)+fib(a-2)

- Example: Binary Search (Problem?)
 - Let $A = [a_1, a_2, \ldots, a_n]$
 - find(A, x, i, j)
 - if $i \geq j$, then
 - if $a_i = x$ return i
 - else return 0
 - $m \leftarrow \lfloor (i + j)/2 \rfloor$
 - if $x > a_m$, then return find($A, x, m + 1, j$)
 - else return find(A, x, i, m)
Section 11

The Big $\Omega\Theta$ Fraternity
Binary Search

- Input list of elements \([a_1, a_2, \ldots, a_n]\), search key \(x\)
- Output index of element matching \(x\), or 0 if not found
- Pseudocode
 - \(i \leftarrow 1\)
 - \(j \leftarrow n\)
 - while \((i < j)\)
 - \(m \leftarrow \lfloor (i + j)/2 \rfloor\)
 - if \(x > a_m\) then \(i \leftarrow m + 1\)
 - else \(j \leftarrow m\)
 - if \(x = a_i\) then return \(i\)
 - else return 0
Binary Search Runtime

- Assume $n = 2^k$ elements in list
- After iteration, remaining list half of previous list size
- After k iterations, list is size 1
- $\log(n) = k$
- Worst case running time is $\log(n)$
Let f and g be functions. $f(x)$ is $O(g(x))$ if $\exists C, k$ such that $f(x) \leq C \ast g(x)$ for all $n > k$ Assume $x \geq 0$.

- Function f grows slower than function g for $n > k$

NOTE: Can say ”is” or \in but $=$ is misleading (although used frequently)

NOTE: Existence proof. Find one C and one k (many may exist).

Technique: Start with known ($x > k$). Remember, we can select k

Apply formulas to generate $C \ast g(x) \geq f(x)$

Examples:

- $f(x) = 17x + 11 \in O(g(x) = x^2)$. Let $C = 2, k = 17$.
 - $x \geq 17 \rightarrow x^2 \geq 17x$
 - $\rightarrow x^2 + x^2 \geq 17x + 11$
 - $\rightarrow 2 \ast x^2 \geq 17x + 11$
Examples:

- $f(x) = x \log(x) \in O(g(x) = x^2)$. Let $C = 1, k = 1$
 - $x \geq 1 \rightarrow x \geq \log(x) \rightarrow x^2 \geq x \log(x)$
- $f(x) = x^2 + x + 1 \in O(g(x) = x^2)$. Let $C = 3, k = 1$
 - $x \geq 1 \rightarrow x^2 \geq x \rightarrow x^2 + x^2 \geq x^2 + x$
 - $\rightarrow x^2 + x^2 + x^2 \geq x^2 + x + 1 \rightarrow 3 \ast x^2 \geq x^2 + x + 1$

To show $f(x)$ is not $O(g(x))$ must show no such C and k can exist.

Example:

- $f(x) = x^2$ is not $O(g(x) = x)$.
 - Assume not. Therefore $\exists C, k$ such that $f(x) \leq C \ast g(x) \forall x > k$
 - Therefore, $x^2 \leq C \ast x \forall x \geq k$.
 - Therefore, $x \leq C \forall x \geq k$, which is a contradiction.
Let f and g be functions. $f(x)$ is $\Omega(g(x))$ if $\exists C, k$ such that $f(x) \geq C \cdot g(x)$ for all $n > k$ Assume $x \geq 0$.

Function f grows faster than function g for $n > k$

$f(x)$ in $\Omega(g(x)) \leftrightarrow g(x) \in O(f(x))$

Example:

- $f(x) = x^2$ is $\Omega(g(x) = x)$ because $g(x) = x$ is $O(f(x) = x^2)$
- $f(x) = x^4/2$ is $\Omega(g(x) = x^2)$. Show $g(x) = x^2$ is $O(f(x) = x^4/2)$

Let $C = 1, k = 2$

$x \geq 2 \rightarrow x^2 \geq 2x \rightarrow x^3 \geq 2x^2 \rightarrow x^4 \geq 2x^2 \rightarrow x^4/2 \geq x^2$
Let f and g be functions. If $f(x)$ is $\Omega(g(x))$ and $f(x)$ is $O(g(x))$, then $f(x)$ is $\Theta(g(x))$.

Equivalent: $f(x)$ is $O(g(x))$ and $g(x)$ is $O(f(x))$.

$f(x)$ is bounded above and below by $g(x)$.

Example:

- $f(x) = x^2 + x + 1$ is $\Theta(g(x) = x^2)$
- Show $f(x)$ is $O(g(x))$, previous slide.
- Show $g(x)$ is $O(f(x))$. Let $C = 1, k = 1$.

$x \geq 1 \rightarrow x^2 + x \geq x^2 \rightarrow x^2 + x + 1 \geq x^2$.
Intractable Problems

- Show $f(x) = x^2$ is $O(g(x) = 2^x)$. Let $C = 1, k = 4$
- $x \geq 4 \rightarrow x \geq 2 \log(x) \rightarrow x \geq \log(x^2) \rightarrow \log(2^x) \geq \log(x^2) \rightarrow 2^x \geq x^2$
- Show $g(x) = 2^x$ is NOT $O(f(x) = x^2)$. Assume not.
- $\exists C, k$ such that $Cx^2 \geq 2^x, \forall x \geq k$
- Therefore, $\log(Cx^2) \geq \log(2^x), \forall x \geq k$
- Let $a = \log(C)$. Therefore, $a + 2 \log(x) \geq x, \forall x \geq k$
- Note that $\forall a \exists x$ s.t. $x > a + 2 \log(x)$. Consider $\max(x = 2^a, 16)$. Then $2^a > 3a$, which is true for $a \geq 4$.
- Therefore, problems requiring exponential time are “harder” than quadratic problems (or any polynomial)
- Such problems are called **intractable**
P=NP?

- P - class of problems solvable in polynomial time
- NP - class of problems best solutions require exponential time
- Unknown if NP problems can be solved in polynomial time
- One of grand challenges of mathematics for 21st century (Millennium Problems)
- Example: Satisfiability
 - Predicate P in CNF $(p \lor q \lor r) \land (\neg p \lor s \lor \neg t)\ldots$
 - Can assign truth values to variables such that P can be satisfied?
 - DNF is trivial $(p \land q \land r) \lor (\neg p \land s \land \neg t)\ldots$
Section 12

Basic Counting
Overview

- Needs to be added for Spring 2019
Section 13

Permutations and Combinations
Overview

- Permutations are the number of arrangements of a set of items of a specific size
- Combinations are the number of subsets of a specific size
- The Binomial Theorem is a general representation of binomial coefficients
- Playing cards
 - 4 suits - spades, hearts, diamonds, clubs
 - 13 values - A,K,Q,J,10,9,8,7,6,5,4,3,2
 - 52 total cards (+ jokers)
Permutations

- **Battle** - Card game where highest value wins (special rules for ties)
- **Demonstration (Hearts only)**
 - How many ways to arrange 6 cards? (Hint: Product rule.)
 - How many ways to arrange 3 of 6 cards?
 - How many ways to arrange k of 6 cards?
 - How many ways to arrange k of n cards?
Permutation Formulae

- All arrangements: \(n(n - 1)(n - 2) \ldots (1) = n! \)
- Arrangements of size \(r \): \(n(n - 1)(n - 2) \ldots n - (r - 1) \)
 - Last term is also \(n - r + 1 \)
 - \((n - r)! = (n - r)(n - r - 1)(n - r - 2) \ldots (1) \)
 - \(\frac{n!}{(n-r)!} \) yields arrangements of size \(r \)
- Formula: \(P(n, r) = \frac{n!}{(n-r)!} \)
- Note: if \(n = r \) then \(P(n, n) \) or \(P(n) = \frac{n!}{(n-n)!} = \frac{n!}{0!} = n! \)
Combinations

- Oh Heck - Card game with hands and “tricks”
- Demonstration (Hearts only)
 - Order of cards in hand does not matter
 - How many different hands of size 3 can be dealt?
 - Given my hand, how many different hands of size 3 can opponent have?
 - Given my hand, how many different hands of size 3 can opponent have with all cards lower than my highest?
Combination Formulae

- Number of permutations divided by the number that are the same (division rule)

\[P(n, r) / P(r) = \frac{n!}{(n-r)!} = \frac{n!}{r!(n-r)!} \]

- Number of subsets of set \(S \) a given size
 - Size 0 is \(\emptyset \), only one \(\frac{n!}{0!(n-0)!} = 1 \)
 - Size \(n \) is \(S \), only one \(\frac{n!}{n!(n-n)!} = 1 \)
 - Size 1 subsets, each element is \(|S| \), \(\frac{n!}{1!(n-1)!} = n \)
 - Size \(n-1 \) subsets, \(S \) with each element removed, number is \(|S| \), \(\frac{n!}{(n-1)!(n-(n-1))!} = n \)

- Formula: \(C(n, r) \) or \(\binom{n}{r} = \frac{n!}{r!(n-r)!} \)

- Note: \(\binom{n}{n} = \frac{n!}{n!0!} = 1 \) and \(\binom{n}{0} = \frac{n!}{n!0!} = 1 \)
Binomial Theorem

\[(x + y)^n = \sum_{k=0}^{n} \binom{n}{k} x^{n-k} y^k = \binom{n}{0} x^n + \binom{n}{1} x^{n-1} y + \binom{n}{2} x^{n-2} y^2 + \ldots + \binom{n}{n-1} x y^{n-1} + \binom{n}{n} y^n\]

- Can find coefficient for any term in binomial expansion
 - Given \((2x + 3y)^4\), what is the coefficient for the \(x^2y^2\) term?
 - \(\binom{4}{2}(2x)^2(3y)^2 = 6 \times 4 \times 9 = 216\)
 - Shows \(\sum_{k=0}^{n} \binom{n}{k} = 2^n\) (from text)
 - \(2^n = (1 + 1)^n = \sum_{k=0}^{n} \binom{n}{k} 1^{n-k} 1^k = \sum_{k=0}^{n} \binom{n}{k}\)
Pascal’s Triangle

- Example on board
- Pascal’s Identity: \(\binom{n+1}{k} = \binom{n}{k-1} + \binom{n}{k} \)
- Algebraic proof:
 \[
 \binom{n+1}{k} = \frac{(n+1)!}{k!(n+1-k)!} \\
 \binom{n}{k-1} = \frac{n!}{(k-1)!(n-(k-1))!} \\
 \frac{k*n!}{k!(n-k)!} \\
 \binom{n}{k} = \frac{n!}{k!(n-k)!} \\
 \frac{(n+1-k)n!}{k!(n-k)!(n+1-k)!} = \frac{(n+1-k)n!}{k!(n+1-k)!} \\
 \binom{n}{k-1} + \binom{n}{k} = \frac{k*n!}{k!(k-1)!(n+1-k)!} + \frac{(n+1-k)n!}{k!(n+1-k)!} \\
 \frac{k*n! + (n+1-k)n!}{k!(n+1-k)!} = \frac{n!(k+n-k+1)}{k!(n+1-k)!} = \frac{(n+1)!}{k!(n+1-k)!}
 \]
Section 14

Probability
Finite Probability

Let S be a set of equally likely outcomes – sample space.

Let $E \subseteq S$ be a set of desired outcomes – event.

$p(E) = \frac{|E|}{|S|}$ – probability of E

Examples (sample space is deck of cards):

- Probability of drawing a heart $p(\text{heart}) = \frac{13}{52} = \frac{1}{4}$
- Probability of drawing a king $p(\text{king}) = \frac{4}{52} = \frac{1}{13}$
- Probability of drawing king of hearts $p(\text{Kheart}) = \frac{1}{52}$
- Probability of drawing two hearts in a row (replacing your card) $p(\text{2hearts}) = \frac{169}{2704}$
 - Why? Two draws makes total outcomes is 52×52.
 - 13 successes in each draw means 169 successful outcomes (product rule).

- Probability of drawing 5 hearts in a row (without replacement)
 \[p(\text{flush}) = \frac{13 \times 12 \times 11 \times 10 \times 9}{52 \times 51 \times 50 \times 49 \times 48} \]
Complements and Unions

- The complement of \(E \) is \(\overline{E} \) is \(S - E \). \(p(\overline{E}) = 1 - p(E) \)
- Probability of not drawing a heart \(p(\overline{\text{heart}}) = 1 - 1/4 = 3/4 \)
- Sometimes much easier to calculate the complement
- The union of two events is \(E_1 \cup E_2 \).
 \[p(E_1 \cup E_2) = p(E_1) + P(E_2) - P(E_1 \cap E_2) \]
- \(p(\text{kingorheart}) = p(\text{king}) + p(\text{heart}) - p(\text{Kheart}) = 1/13 + 1/4 - 1/52 = 16/52 \)
Let S be a sample space

- Each element in S is assigned a probability $(p(s))$.
- $0 \leq p(s) \leq 1$
- $\sum_{s \in S} p(s) = 1$

Function from S to set of probabilities is called probability distribution function

- If all probabilities are the same, uniform distribution
 \[|S| = n, \forall s \in S, p(s) = 1/n \]
- $p(E) = \sum_{s \in E} p(s)$
Conditional Probability

- Probability of event E given that event F has happened
 \[p(E|F) \]
- \[p(E|F) = \frac{p(E \cap F)}{p(F)} \]
- Example:
 - Given that 4 hearts in a row have been drawn, what is the probability that a 5th heart will be drawn?
 - \[p(F) = p(4\text{hearts}) = \frac{13 \times 12 \times 11 \times 10}{52 \times 51 \times 50 \times 49} \]
 - In this case, \[p(E \cap F) = p(E) = p(\text{flush}) = \frac{13 \times 12 \times 11 \times 10 \times 9}{52 \times 51 \times 50 \times 49 \times 48} \]
 - \[p(E|F) = \frac{9}{48} \]
Independence

- Two events are independent if one happening has no effect on the other happening

- Examples:
 - I draw a 7 from a deck of cards and you draw a 10 from a different deck.
 - I wear a hat and President Livingstone wears a hat.
 - We have an exam in 2350 and Dr. Donahoo gives an exam in 4321.

- \(E \) and \(F \) are independent iff \(p(E) \times p(F) = p(E \cap F) \)

- Different decks:
 \(p(7) = \frac{1}{13}, p(10) = \frac{1}{13}, p(7 \wedge 10) = \frac{1}{169} \approx 0.0060 \)

- Same decks: \(p(7) = \frac{1}{13}, p(10) = \frac{1}{13}, p(7 \wedge 10) = \frac{1}{13} \times \frac{4}{51} = \frac{4}{663} \approx 0.0059 \)
Bernoulli Trials

- Probability of k successes of n independent trials with success p and failure $q = 1 - p$ is $\binom{n}{k} p^k q^{n-k}$

- Examples (replacing cards back in deck)
 - Probability of drawing 4 hearts out of 5 cards
 - $n = 5, k = 4, p = .25, q = .75, p(4H) = \binom{5}{4} .25^4 .75 \approx .0146$
 - Probability of drawing at least 4 hearts out of 5 cards
 - $p(4H) + p(5H) = \binom{5}{4} .25^4 .75 + \binom{5}{5} .25^5 .75^0 = 0.015625$
 - Probability of drawing at least 2 hearts out of 5 cards
 - $1 - (p(0H) + p(1H)) = 1 - \binom{5}{0} .25^0 .75^5 + \binom{5}{1} .25^1 .75^4 \approx 0.367$
Random Variable

- Not random and not a variable
- Function from S to \mathbb{R} (assigns real number to each possible outcome)
- Example: (Replacing cards as before)
 - Draw 3 cards from a deck. The set of all possible outcomes is S.
 - Let $X(s)$ be the random variable of the number of times a heart is drawn, where $s \in S$
 - Quick demo
 - $\forall s \in S$, $0 \leq X(s) \leq 3$
 - Distribution of X on S is the set of pairs $(r, p(X = r))$ where $r \in X(s)$
 - From example:
 - $(0, 0.421875), (1, 0.421875), (2, 0.140625), (3, 0.015625)$
Section 15

Expected Value and Variance
Expected Value

- Given a random variable X, the *expected value* of X is
- $E(X) = \sum_{s \in S} p(s)X(s)$
- Recall $X(s) = y$ means y is the number of interesting occurrences in event s
- Examples:
 - Assume cards 2-10 of hearts. Let X be the value of the card. Expected value of drawing a card:
 $1/9 \times 2 + 1/9 \times 3 + 1/9 \times 4 + 1/9 \times 5 + 1/9 \times 6 + 1/9 \times 7 + 1/9 \times 8 + 1/9 \times 9 + 1/9 \times 10 = 6$
 - Assume J,Q,K have value 10 and A has value 11. Expected value of a card:
 $E(X) = 1/13 \times (\sum_{k=2}^{9} k + 11) + 4/13 \times 10 = 95/13$
 - Assume 5 cards, consisting of 4 2s and 1 3.
 $E(X) = .8 \times 2 + .2 \times 3 = 2.2$
The expected number of success of n Bernoulli trials with success p is $n \times p$.

Proof: (from text)

Let $X(s)$ be the number of successes out of n trials.

$p(X = k) = \binom{n}{k} p^k q^{n-k}$

$E(X) = \sum_{k=1}^{n} k \times \binom{n}{k} p^k q^{n-k} \quad \text{Note: } k = 0 \text{ adds } 0 \text{ to } E(X)$

$= \sum_{k=1}^{n} n \binom{n-1}{k-1} p^k q^{n-k}$

$= np \times \sum_{k=1}^{n} \binom{n-1}{k-1} p^{k-1} q^{n-k}$

$= np \times \sum_{j=0}^{n-1} \binom{n-1}{j} p^j q^{n-1-j} \quad \text{(by shifting index)}$

$= np \times (p + q)^n - 1 \quad \text{(by binomial theorem)}$

$= np \quad \text{(by } p + q = 1)$
Linearity

- Expected value of sum of random variables is sum of expected values
- \(E(X_1 + X_2 + \ldots + X_n) = E(X_1) + E(X_2) + \ldots + E(X_n) \)
- \(E(aX + b) = a \cdot E(X) + b \)
- Examples:
 - Sum of two cards (with replacement) is \(14 \frac{8}{13} \)
 - Sum of two die rolls is \(2 \cdot E(X) \) where \(E(X) = \frac{1}{6} \cdot \sum_{k=1}^{6} k = \frac{21}{6} \) or 7
Complex Example - Expected number of inversions in a polynomial

- A permutation P of integers $1 \ldots n$ is an arrangement of the numbers
- An inversion is where $i < j$ but $j \prec i$ in P
- Example: $P = (1, 3, 5, 2, 4)$ the inversions are $(2, 3), (2, 5), (4, 5)$
- Let $l_{i,j}$ be the random variable on the set of all permutations of the first n integers with $l_{i,j} = 1$ if (i, j) is an inversion on the permutation
- For the example, $l_{2,3}(P) = 1, l_{1,4} = 0$
- Let X be the random variable equal to the number of inversions, $X = \Sigma_{1 \leq i < j \leq n} l_{i,j}$
- For example, $X(P) = 3$
- $E(l_{i,j}) = 1 \times p(l_{i,j} = 1) + 0 \times p(l_{i,j} = 0) = 1/2$ (equally likely inversion as not)
- There are $\binom{n}{2}$ ways for 2 numbers to be arranged out of n
- $E(X) = \binom{n}{2} E(l_{i,j}) = \frac{n!}{(n-2)!2*2} = \frac{n*(n-1)}{4}$
Average Case Complexity

- S is the possible inputs to the program
- $X : S \rightarrow \mathbb{R}$, such that $\forall s \in S, X(s)$ is the number of operations performed
- Let $p(s)$ be the probability of s being the input to the program
- $\sum_{s \in S} p(s)X(s)$ is the expected (or average) number of operations
Average Complexity Linear Search (text)

- Let p be the probability $x \in A$. Assume x is equally likely to be in any other location
- Counting number of comparisons
- For each element, check to see if at end of array and compare value (2 comparisons per element)
- After loop, one comparison to see if past end of array
- Probability x is at element k is p/n
- Probability x is not in list is $q = 1 - p$
- If $x \in A$, then $\Sigma_{k=1}^{n} \frac{p}{n} (2 \times k + 1) =$
 $$\frac{p}{n} \times \Sigma_{k=1}^{n} (2k + 1) = \frac{p}{n} \times (n + 2 \times \Sigma_{k=1}^{n} k)$$
 $$= \frac{p}{n} \times (n + 2 \times \frac{n(n+1)}{2}) = \frac{p}{n} \times (n + n(n+1)) = p \times (1 + n + 1) = p(n+2)$$
- If $x \not\in A$, then $(2n + 2)q$
- $E(X) = p(n + 2) + (2n + 2)q$
Variance

- Let X by a random variable on S
- Variance on X (denoted $V(X)$) indicates the spread of values in $X(S)$
- $V(X) = \sum_{s \in S} (X(s) - E(X))^2 p(s)$
- Standard deviation $\sigma(X) = \sqrt{V(X)}$
- Example:
 - Blackjack cards: $V(X) = \sum_{s \in S} (X(s) - 7 \cdot \frac{4}{13})^2 \cdot p(s) = $
 - $(-5 \cdot \frac{4}{13})^2 \cdot 1/13 + (-4 \cdot \frac{4}{13})^2 \cdot 1/13 + \ldots + (2 \cdot \frac{9}{13})^2 \cdot 4/13 + (3 \cdot \frac{9}{13})^2 \cdot 1/13$
 - ≈ 8.5
 - $\sigma(X) \approx 2.9$
Variance Continued

- \(V(X) = E(X^2) - E(X)^2 \)
- **Example:**
 - Blackjack cards: \(E(X)^2 = (7 \frac{4}{13})^2 \approx 53.4 \)
 - \(E(X^2) = 1/13 \ast (\sum_{k=2}^{9} k^2 + 121) + 4/13 \ast 100 = \frac{784}{13} \approx 61.9 \)
 - \(\approx 8.5 \)
 - \(\sigma(X) \approx 2.9 \)
- Let \(E(X) = \mu \). Then \(V(X) = E((X - \mu)^2) \)
 - \(= 1/13 \ast (\sum_{k=2}^{9} (k - 7 \frac{4}{13})^2 + (11 - 7 \frac{4}{13})^2) + 4/13(10 - 7 \frac{4}{13})^2 = 8.5 \)
- Let \(X \) be a random variable such that \(X(t) = 1 \) if a Bernoulli trial is successful and \(X(t) = 0 \) otherwise.
- **Note:** Single trial, so \(n = 1 \) for Bernoulli distribution.
 - \(E(X) = p \ast 1 + q \ast 0 = p \). \(E(X^2) = p \ast 1^2 + q \ast 0^2 = p \).
 - \(E(X)^2 = p^2 \). \(V(X) = p - p^2 = p(1 - p) = pq. \)
Variance Equations

- Bienayme’s Formula
- If X and Y are independent random variables on S, then $V(X + Y) = V(X) + V(Y)$
- Chebyshev’s Inequality
- If X is a random variable on S with probability function p, then $p(|X(s) - E(X)| \geq r) \leq V(X)/(r^2)$
- Example:
 - Probability draw a card 3 or more from the mean of blackjack cards
 - $V(X)/r^2 \approx 8.5/9 \approx 0.94$
 - Actual is 2, 3, 4, $A = 4/13$
Section 16

Recurrence Relations
Definitions

- A recurrence relation is an equation that expresses a_n in terms of one of more of the previous terms.
- A sequence is a solution to a recurrence relation if its terms satisfy the equations.
- Examples:
 - Recurrence Relation: $a_n = a_{n-1} + 3, a_0 = 2$. Solution: $[2, 5, 8, \ldots]$
 - Fibonacci: $a_n = a_{n-1} + a_{n-2}, a_0 = 1, a_1 = 1$. Solution: $[0, 1, 1, 2, 3, 5, \ldots]$
- A closed form solution is an equation for each term that does not reference other terms.
Linear Homogeneous Recurrence Relation

Definition

- A *linear homogeneous recurrence relation of degree k with constant coefficients* is a recurrence relation of the form:
 \[a_n = c_1 a_{n-1} + c_2 a_{n-2} + \ldots + c_k a_{n-k} \]
 such that every \(c_i \in \mathbb{R} \) and \(c_k \neq 0 \).
- Linear because each right-hand side term is sum of previous terms
- Homogeneous because no terms occur that are not multiples of previous terms
- Constant coefficients means no \(c_i \) can reference \(n \) (but note that 0 is allowed for all but last coefficient)
- The degree is determined by the number of terms required
Linear Homogeneous Recurrence Relation

- **Examples**
 - \(a_n = \frac{3a_{n-1}}{2}\) is l.h.r.r. of degree 1
 - Fibonacci is l.h.r.r of degree 2
 - \(a_n = 2 \times a_{n-5}\) is l.h.r.r of degree 5 (4 terms with 0 as coefficient)
 - \(a_n = a_{n-1} + 3\) is not l.h.r.r because 3 is not multiple of previous term
 - \(a_n = 2^n a_{n-1}\) is not l.h.r.r because \(2^n\) is not constant coefficient
 - \(a_n = a_{n-1}^2\) is not l.h.r.r because squared term is not linear
Solving L.H.R.R. of degree 2

- Find closed form equation (of the form $a_n = r^n$).
- $r^n = c_1 r^{n-1} + c_2 r^{n-2} + \ldots + c_k r^{n-k}$
- $r^k = c_1 r^{k-1} + c_2 r^{k-2} + \ldots + c_k$ – divide both sides by r^{n-k}
- $r^k - c_1 r^{k-1} - c_2 r^{k-2} - \ldots - c_k = 0$ – is the characteristic equation
- Solutions to the characteristic equation are the characteristic roots
- Assuming degree=2 and distinct roots r_0 and r_1, $a_n = \alpha_1 r_0^n + \alpha_2 r_1^n$
- Use initial terms to solve for α_1 and α_2
Solving L.H.R.R.

- \(a_n = 5a_{n-1} - 6a_{n-2}, a_0 = 1, a_1 = 0 \)
- \(r^n = 5r^{n-1} - 6r^{n-2} \rightarrow r^2 = 5r - 6 \rightarrow r^2 - 5r + 6 = 0 \)
- Characteristic Roots are 3, 2
- \(a_n = \alpha_1 3^n + \alpha_2 2^n \)
- \(1 = \alpha_1 + \alpha_2 \rightarrow 1 - \alpha_1 = \alpha_2 \)
- \(0 = \alpha_1 \ast 3 + \alpha_2 \ast 2 \rightarrow 0 = \alpha_1 \ast 3 + (1 - \alpha_1) \ast 2 \rightarrow \alpha_1 = -2 \rightarrow \alpha_2 = 3. \)
- \(a_n = -2(3^n) + 3(2^n) \)
- Check: Sequence solution is \([1, 0, -6, -30, \ldots]\)
- \(a_3 = -2(3^3) + 3(2^3) = -54 + 24 = -30 \)
Fibonacci: $a_n = a_{n-1} + a_{n-2}, a_0 = 0, a_1 = 1$

$r^2 = 1r^1 + 1r^0$

$r^2 - r^1 - 1 = 0$

Quadratic Equation: $\frac{-b\pm\sqrt{b^2-4ac}}{2a}$

$a = 1, b = -1, c = -1, \frac{1+\sqrt{1+4}}{2}, \frac{1-\sqrt{1+4}}{2}$

$a_n = \alpha_1 \left(\frac{1+\sqrt{5}}{2}\right)^n + \alpha_2 \left(\frac{1-\sqrt{5}}{2}\right)^n$

Use a_0 and a_1 to determine values for alpha
Solving L.H.R.R. continued

- $0 = \alpha_1 \left(\frac{1+\sqrt{5}}{2}\right)^0 + \alpha_2 \left(\frac{1-\sqrt{5}}{2}\right)^0 = \alpha_1 + \alpha_2$
- Therefore, $-\alpha_1 = \alpha_2$
- $1 = \alpha_1 \left(\frac{1+\sqrt{5}}{2}\right)^1 + \alpha_2 \left(\frac{1-\sqrt{5}}{2}\right)^1$
- Substituting: $1 = \alpha_1 \left(\frac{1+\sqrt{5}}{2}\right)^1 - \alpha_1 \left(\frac{1-\sqrt{5}}{2}\right)^1$
- $1 = \alpha_1 \left(\frac{1+\sqrt{5}}{2} - \frac{1-\sqrt{5}}{2}\right) = \alpha_1 \frac{1+\sqrt{5}-1+\sqrt{5}}{2} = \alpha_1 \sqrt{5}$
- $\alpha_1 = \frac{1}{\sqrt{5}}, \alpha_2 = -\frac{1}{\sqrt{5}}$
- $a_n = \frac{1}{\sqrt{5}} \left(\frac{1+\sqrt{5}}{2}\right)^n + -\frac{1}{\sqrt{5}} \left(\frac{1-\sqrt{5}}{2}\right)^n$
- Test cases:
 - $\text{fib(0)} = 0. \frac{1}{\sqrt{5}} \left(\frac{1+\sqrt{5}}{2}\right)^0 + -\frac{1}{\sqrt{5}} \left(\frac{1-\sqrt{5}}{2}\right)^0 = \frac{1}{\sqrt{5}} - \frac{1}{\sqrt{5}} = 0$
 - $\text{fib(5)} = 5. \frac{1}{\sqrt{5}} \left(\frac{1+\sqrt{5}}{2}\right)^5 + -\frac{1}{\sqrt{5}} \left(\frac{1-\sqrt{5}}{2}\right)^5 \approx 4.96 - -(0.04) = 5$
 - $\text{fib(18)} = 2584. \frac{1}{\sqrt{5}} \left(\frac{1+\sqrt{5}}{2}\right)^{18} + -\frac{1}{\sqrt{5}} \left(\frac{1-\sqrt{5}}{2}\right)^{18} \approx 2584.00007 - (7 \times 10^{-5} = 2584)$
Let $r^2 - c_1 r^1 - c_2 r^0$ have only one real root x.

Closed form solution for $a_n = \alpha_1 x^n + \alpha_2 n \times x^n$

Example: $a_n = 4a_{n-1} - 4a_{n-2}$, $a_0 = 6$, $a_1 = 8$

$r^2 = 4r - 4 \rightarrow r^2 - 4r + 4 = 0$

$\frac{4 \pm \sqrt{16 - 4 \times 1 \times 4}}{2} = \frac{4}{2} = 2$

$a_n = \alpha_1 2^n + \alpha_2 n \times 2^n$

$a_0 = \alpha_1 2^0 + \alpha_2 0 \times 2^0 \rightarrow 6 = \alpha_1$

$a_1 = \alpha_1 2^1 + \alpha_2 1 \times 2^1 \rightarrow 8 = 6 \times 2 + \alpha_2 \times 2 \rightarrow -2 = \alpha_2$

$a_n = 6(2^n) - 2n(2^n)$

Check: $[6, 8, 8, 0, -32, \ldots]$

$a_4 = 6 \times 16 - 8 \times 16 = 96 - 128 = -32$
Section 17

Relations
Definitions of Relations

- A *relation* between sets A and B is a subset of $A \times B$
- Typically, a relation defines a connection between elements of the set
- Example 1: $A = \{ \text{students in class} \}, \ B = \{ \text{side of room} \}, \ R(a, b) \leftrightarrow a \text{ sits on } b \text{ side of the room. (on board)}$
- Example 2: $A = \{ \text{volunteers} \}, \ B = \{ \text{food} \}, \ R(a, b) \rightarrow a \text{ likes } b. \text{(on board)}$
- Functions are relations restricted such that elements from A appear only once (Example 1)
- Graphs can show relations
- Relations can be on one set $A = \{ \text{food} \}, \ B = \{ \text{food} \}, \ R(a, b) \leftrightarrow a \text{ is the same color as } b \text{ (on board). Usually written as } R(a, a)$
Consider relations on $\mathbb{Z} \times \mathbb{Z}$

- **Reflexive**: $\forall a \in A, R(a, a)$
 - $R(z_0, z_1) \iff z_0 \leq z_1$ is reflexive
 - $R(z_0, z_1) \iff z_0 < z_1$ is NOT reflexive

- **Symmetric**: $\forall a \in A, \forall b \in B, R(a, b) \rightarrow R(b, a)$
 - $R(z_0, z_1) \iff z_0 \leq z_1$ is NOT symmetric
 - $R(z_0, z_1) \iff z_0 = z_1$ is symmetric (and reflexive)
 - $R(z_0, z_1) \iff z_0$ and z_1 are relatively prime is symmetric (and not reflexive)

- **Antisymmetric** (poorly named):
 $\forall a \in A, \forall b \in B, R(a, b) \land R(b, a) \rightarrow a = b$
 - $R(z_0, z_1) \iff z_0 \leq z_1$ is antisymmetric
 - $R(z_0, z_1) \iff z_0 = z_1$ is antisymmetric
 - $R(z_0, z_1) \iff z_0$ and z_1 are relatively prime is NOT antisymmetric
Properties of Relations

- **Transitive**: \(R(a, b) \land R(b, c) \rightarrow R(a, c) \)
 - \(R(z_0, z_1) \leftrightarrow z_0 \leq z_1 \) is transitive
 - \(R(z_0, z_1) \leftrightarrow z_0 = z_1 \) is transitive
 - \(R(z_0, z_1) \leftrightarrow z_0 \) and \(z_1 \) are relatively prime is NOT transitive
Sets and Relations

- Relations are sets of ordered pairs. Therefore, all set operations apply.

- \(R(z_0, z_1) \iff z_0 \leq z_1 - R(z_0, z_1) \iff z_0 < z_1 = R(z_0, z_1) \iff z_0 = z_1 \)

- Proof:
 - Let \(LEQ = R(z_0, z_1) \iff z_0 \leq z_1, LT = R(z_0, z_1) \iff z_0 < z_1 \) and \(EQ = R(z_0, z_1) \iff z_0 = z_1 \).
 - Let \((a, b) \in LEQ - LT\). Therefore, \((a, b) \in LEQ\) and \((a, b) \notin LT\).
 - Therefore, \(a \leq b \) and \(a \geq b \) (not less than).
 - Therefore, \(a = b \) and \(EQ(a, b) \). Reverse direction is similar.

- Let \(A = \{1, 2, 3\} \). Let \(R(a, a) = \{(1, 1), (2, 2), (1, 2)\}\) and \(S(a, a) = \{(1, 1), (2, 2), (2, 1)\}\).

 - \(R \cup S = \{(1, 1), (2, 2), (1, 2), (2, 1)\}\)
 - \(R \cap S = \{(1, 1), (2, 2)\}\)
 - \(R \oplus S = \{(1, 2), (2, 1)\}\)
N-ary Relations

- Text is awkward with notation
- Extend notion to n-wise cross product.
- Given sets $S_0, S_1, \ldots S_{n-1}$, $R \subseteq S_0 \times S_1 \times \ldots \times S_{n-1}$
- $r \in R$ is a n-tuple. Note that the ordering is important.
- Relational databases (Oracle, MySQL, SQLServer, etc.) use tables as relations with attributes representing sets
- Example: Students(Id, Name, Major, Favorite Number)
- Collection of attributes is the schema
- Note: Databases allow duplicate elements – database tables are bags of n-tuples
- Id is primary key uniquely identifies row in table
Basic Relational Algebra

- Let $R(A, B, C) = \{(1, 2, 3), (2, 3, 4)\}$ and $S(C, D, E) = \{(3, 4, 5), (3, 2, 1)\}$
- $\sigma_P R$ (selection) creates new table with same schema as R. A row is in $\sigma_P R$ if it is in R and it satisfies predicate P
- $\sigma_{A=1} R = \{(1, 2, 3)\}$
- $\Pi_{A,B} R$ (projection) creates new table with columns A and B. There is a 1-1 mapping from each row in R to each row in $\Pi_{A,B} R$
- $\Pi_{B,C} R = \{(2, 3), (3, 4)\}$
- $R \bowtie S$ (natural join) creates new table with union of columns in R and in S. A row is in $R \bowtie S$ if $\exists r \in R \land s \in S$ such that $r[R \cap S] = s[R \cap S]$.
- $R \bowtie S = \{ (1, 2, 3, 4, 5), (1, 2, 3, 2, 1) \}$
- Note: Results of relational algebra operators are relations. Operations can be composed.
- $\Pi_{A,E}(\sigma_{B=D}(R \bowtie S)) = \{ (1, 1) \}$
 Queries

- Example queries using relational algebra
- To be added Spring 2019
Section 18

Relations, Matrices and Digraphs
Matrices and Relations

- Matrix representation of $R(a, a)$ (can be any relation – see text)
- $M_R[i, j] = 1 \iff R(i, J)$. Otherwise, $M_R[i, j] = 0$.
- Matrix M_R is the representation of $R = \{(1, 1), (1, 2), (2, 1), (3, 3)\}$
- Matrix M_S is the representation of $S = \{(2, 2), (2, 3), (3, 2), (3, 3)\}$
- Matrix diagonal all 1's implies relation is reflexive
- $M = M^t$ implies relation is symmetric

\[
M_R = \begin{bmatrix}
1 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 1
\end{bmatrix}
\quad
M_S = \begin{bmatrix}
0 & 0 & 0 \\
0 & 1 & 1 \\
0 & 1 & 1
\end{bmatrix}
\]
Matrix Operations and Relational Operations

- $A \lor B$ is the *join* of matrices A and B – logical OR of corresponding elements
- $A \land B$ is the *meet* of matrices A and B – logical AND of corresponding elements
- $A \circ B$ is the *Boolean product* of matrices A and B – $C = A \circ B \rightarrow c_{ij} = (a_{i1} \land b_{1j}) \lor (a_{i2} \land b_{2j}) \lor \ldots \lor (a_{in} \land b_{nj})$ – see below (note similarity to matrix multiplication)
- $M_R \lor M_S = R \cup S$
- $M_S \land M_S = R \cap S$
- Boolean product is composition of relations
- $M_R \circ M_R = M_R \rightarrow R$ is transitive (but not “iff”)

\[
\begin{bmatrix} 1 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix} \circ \begin{bmatrix} 0 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 1 & 1 \end{bmatrix} = \begin{bmatrix} 0 & 1 & 1 \\ 0 & 0 & 0 \\ 0 & 1 & 1 \end{bmatrix}
\]
Let R be a relation on set A

$G_R = (A, E)$ where $E \subseteq A \times A$ such that $(a_i, a_j) \in E \iff R(a_i, a_j)$

Example on board for $R = \{(1, 1), (1, 2), (2, 3), (3, 1)\}$

Boolean product of $M_R \odot M_R$ contains edges two steps away

\[
\begin{bmatrix}
1 & 1 & 0 \\
0 & 0 & 1 \\
1 & 0 & 0
\end{bmatrix}
\odot
\begin{bmatrix}
1 & 1 & 0 \\
0 & 0 & 1 \\
1 & 0 & 0
\end{bmatrix}
= \begin{bmatrix}
1 & 1 & 1 \\
1 & 0 & 0 \\
1 & 1 & 0
\end{bmatrix}
\]
Paths and Boolean Products

- $M^n_R[i, j] = 1$ (Boolean product of M_R with itself n times) iff G_R contains a path of length n from a_i to a_j

- Proof (by induction):
 - WLOG, let $|A| = p$
 - Basis: By definition, G_R contains an edge from a_i to a_j exactly when $M_R[i, j] = 1$
 - Inductive Hypothesis: If $M^k_R[i, j] = 1$, there exists a path of length k from a_i to a_j in G_R.
 - Consider $M^{k+1}_R = M^k_R \odot M_R$. $M^{k+1}_R[i, j] = 1$ iff $\exists m, 1 \leq m \leq p$ such that $M^k_R[i, m] = 1$ and $M_R[m, j] = 1$.
 - By the IH, $M^k_R[i, m] = 1$ means there is a path of length k from a_i to a_m. Call this path P.
 - $M_R[m, j] = 1$ means there is an edge from a_m to a_j.
 - The path P' which follows P for k steps, then takes the edge from a_m to a_j is a path from a_i to a_j and is of length $k + 1$

- The completion of the proof (showing if there is a path of length k in G_R then $M^k_R[i, j] = 1$) is in the homework.
Let $|A| = n$.

\[\bigvee_{k=1}^{n} M_{R}^{k} \text{ is the transitive closure of } R\]

Also called the connectivity relation R^*.

Given a graph $G = (A, E)$, we can define $R(a_i, a_j) \iff (a_i, a_j) \in E$ (e.g., derive relation from graph).

Note: If there is a path from a_i to a_j in G, then the shortest path cannot be longer than $|A|$.

Transitive closure is the set of all paths in G.
Equivalence Relations

- An equivalence relation is a relation that is reflexive, symmetric and transitive.
- If $R(A, A)$ is an equivalence relation, then $R(a_i, a_j)$ means $a_i \sim a_j$ (a_i and a_j are equivalent).
- Let $R(A, A)$ be an equivalence relation. The equivalence class of $a_i \in A$, $[a]_R = \{a_j | R(a_i, a_j)\}$.
- Note: $a_i \in [a_i]_R$, since R is reflexive.
- Note: $\bigcup_{a \in A}[a]_R = A$
- Note: $a_j \notin [a_i]_R \rightarrow [a_j]_R \cap [a_i]_R = \emptyset$
- Note: $a_j \in [a_i]_R \rightarrow [a_j]_R = [a_i]_R$
- The equivalence classes of R form a partition of A.
Partial Orders

- $R(A, A)$ is a *partial order* on A iff it is reflexive, antisymmetric and transitive.
- (A, R) is a partially ordered set or a *poset*.
- Consider $R = \{(1, 1), (2, 2), (3, 3), (4, 4), (1, 2), (1, 3), (2, 4)\}$ (M_R is below).
- Arbitrary relation symbol is ≤, so (A, \leq) is a poset with arbitrary relation.

$$M_R = \begin{bmatrix}
1 & 1 & 0 & 1 \\
0 & 1 & 0 & 1 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
\end{bmatrix}$$
Poset Properties

- Not all elements are related – 2 and 3 from previous
- if $a \leq b$ holds a and b are comparable.
- if all elements in A are comparable, (S, \preceq) is a total ordering.
- $\forall a_i \in A, a_j \npreceq a_i \rightarrow a_j$ is a maximal element (3 and 4 are maximal in example)
- $\forall a_i \in A, a_i \npreceq a_j \rightarrow a_j$ is a minimal element (1 is minimal in example)
- every poset has at least one minimal and one maximal element (can have more)
Section 19

Graphs
Terminology

- A graph $G = (V, E)$ where V is a set of vertices (or nodes) and $E \subseteq V \times V$ is a set of edges.
- A graph can be directed
 - first vertex in an edge is the source
 - second vertex is the destination
 - connectivity is from source to destination
 - edges represented as arrows pointing at the destination
 - example on board
- A graph can be undirected
 - both vertices are incident on edge
 - connectivity is bidirectional
 - edges represented as lines between vertices
 - example on board
- A graph is simple if E is a set and there are no self-loops.
Neighborhoods

- Vertex v_i is adjacent to v if there is an edge from v to v_i
- Vertex v_i is a *neighbor* of v if it is adjacent to v
- Set of neighbors of v are the *neighborhood* of v, denoted $N(v)$
- Directed graph definition: $N(v) = \{ v_i \in V | (v, v_i) \in E \}$
- Undirected graph definition:
 $N(v) = \{ v_i \in V | (v, v_i) \in E \lor (v_i, v) \in E \}$
- Neighborhood can apply to $A \subset V. N(A) = \bigcup_{v \in A} N(v)$.
- Example on board
Degree of a node

- The degree \(\text{deg}(v) \) of a node in an undirected graph is the number of times an edge connects to the node.

- \(\text{deg}(v) = |\{(v, v_i)|(v, v_i) \in E\}| + |\{(v_i, v)|(v_i, v) \in E\}| \)

- Example on board

- **Handshake Theorem**: Let \(G = (V, E) \) be an undirected graph. \(2|E| = \sum_{v \in V} \text{deg}(v) \).

- **Proof by induction**
 - **Basis**: Let \(E = \emptyset \). Therefore, \(\forall v \in V, \text{deg}(v) = 0 \), so \(\sum_{v \in V} \text{deg}(v) = 0 = 2 \times |E| \)
 - **Inductive Hypothesis**: Let \(G = (V, E) \) be a graph with \(k \) edges. Therefore, \(2|E| = \sum_{v \in V} \text{deg}(v) \).
 - Let \(G' = (V', E') \) such that \(V' = V \) and \(E' = E \cup (v_i, v_j) \).
 - **Case 1**: \((v_i, v_j) \in E \). Therefore, \(E = E' \) and by the inductive hypothesis, the theorem holds.
 - **Case 2**: \((v_i, v_j) \notin E \). Therefore, \(|E'| = |E| + 1 \).
 - Note that, \(\text{deg}(v_i) \) and \(\text{deg}(v_j) \) both increase by one. Therefore, \(\sum_{v \in V'} \text{deg}(v) = \sum_{v \in V} \text{deg}(v) + 2 \).
 - Therefore, \(2|E'| = 2|E| + 2 = \sum_{v \in V} \text{deg}(v) + 2 = \sum_{v \in V'} \text{deg}(v) \).
The \textit{indegree} \((\text{deg}^-(v))\) of a node \(v\) in a directed graph is the number of edges with \(v\) as the destination.

The \textit{outdegree} \((\text{deg}^+(v))\) of a node \(v\) in a directed graph is the number of edges with \(v\) as the source.

Example on board:

\[
\sum_{v \in V} \text{deg}^-(v) = \sum_{v \in V} \text{deg}^+(v) = |E|
\]
Special Graphs

Let $G = (V, E)$ be a simple graph. G is a complete graph iff $\forall v_i, v_j \in V, v_j \in N(v_i)$.

Example on board.

Let $G = (V_1 \cup V_2, E)$ be a simple graph. G is a bipartite graph iff $\forall (v_i, v_j) \in E, v_i \in V_1 \rightarrow v_j \in V_2 \land v_i \in V_2 \rightarrow v_j \in V_1$.

Example on board.

Let $G = (V_1 \cup V_2, E)$ be a simple graph. G is a complete bipartite graph iff it is bipartite and every node in V_1 is connected to every node in V_2.

Matchings

- A **matching** of a bipartite graph $G = (V_1 \cup V_2, E)$ is a subgraph $G' = (V_1 \cup V_2, E' \subseteq E)$ such that $\forall v \in V_1 \cup V_2, \deg(v) \leq 1$.

- A **maximum matching** is a matching with the largest number of edges.

- A **complete matching** is a matching from V_1 to V_2 such that all nodes in V_1 are incident on an edge ($|E'| = |V_1|$)

- **Hall’s Marriage Theorem**: A bipartite graph $G = (V_1 \cup V_2, E)$ has a complete matching iff $\forall A \in 2^{V_1}, |N(A)| \geq |A|$.
Section 20

Graphs, Paths and Circuits
Graph Isomorphism

- $G_1 = (V_1, E_1)$ is isomorphic to $G_2 = (V_2, E_2)$ iff there exists a bijective function $f : V_1 \to V_2$ such that $v_i \in N(v_j)$ in G_1 iff $f(v_i) \in N(f(v_j))$ in G_2.
- Example on board (isomorphic and not isomorphic)
- Properties which must hold under isomorphism
 - Number of vertices
 - Number of edges
 - Number of vertices with same degree
- M_G is adjacency matrix of G
- Rearrange rows and columns of M_{G_1} until $M_{G_1} = M_{G_2}$, then G_1 is isomorphic to G_2
- Example on board
Paths

- A *path* in a simple graph G is a sequence $P = [x_0, x_1, \ldots, x_{n-1}]$ of vertices such that $x_{i+1} \in N(x_i)$.
- A *circuit* is a path such that $x_0 = x_{n-1}$.
- The length of P is $n - 1$.
- Example on board (undirected and directed).
- A graph is *connected* if there is a path (in both directions) between every pair of distinct vertices.
- A *connected component* of G is a subgraph G' such that G' is connected and there does not exists a connected subgraph G'' of G such that G' is a proper subgraph of G''.
- An *articulation point* is a vertex $v \in V$ such that the removal of v would make G no longer connected.
- A *bridge* is an edge $(v_i, v_j) \in E$ such that the removal of (v_i, v_j) would make G no longer connected.
- Example on board.
- Paths are preserved under isomorphism. Therefore, if G_1 has a circuit of length k and G_2 does not, then G_1 and G_2 are not isomorphic.
Euler Circuits and Paths

- A multigraph G contains multiple edges from two vertices (i.e., E is not a set)
- A Euler circuit in G is a simple circuit containing every edge in G
- A Euler path in G is a simple path containing every edge in G
- Example on board
- Conditions for Euler circuits:
 - G must be connected
 - Every vertex must have even degree
- Conditions for Euler path, but NOT Euler circuit
 - G must be connected
 - Exactly two vertices with odd degree
- Excellent proofs in text
Hamilton Circuits and Paths

- A Hamilton circuit in G is a simple circuit containing every vertex in G
- A Hamilton path in G is a simple path containing every vertex in G
- Example on board
- No known simple criteria for Hamilton circuits or paths (necessary and sufficient)
- Sufficient criteria for circuit in simple, undirected graph $G = (V, E)$
 - G is connected
 - $|V| \geq 3 \land \forall v \in V, \ deg(v) \geq n/2$ (Dirac’s Theorem)
 - $|V| \geq 3 \land \forall u, v \in V, u \notin N(v) \rightarrow \deg(u) + \deg(v) \geq n$ (Ore’s Theorem)
Section 21

Shortest Path and Trees
Shortest Path

- A weighted graph $G^+(V, E)$ where E is a set of 3-tuples (v_i, v_j, w) such that w is the weight of the edge (v_i, v_j)
- Can be directed or undirected
- The matrix representation of G^+ uses weights as values (assuming simple graph with all weights positive)
- Example on board using matrix below
- The shortest path has the least sum of weights
- Example on board from 0 to 4

\[
M = \begin{bmatrix}
0 & 10 & 0 & 20 & 0 \\
12 & 12 & 12 & 12 & 12 \\
0 & 0 & 0 & 0 & 0 \\
20 & 12 & 0 & 0 & 10 \\
0 & 12 & 5 & 10 & 0 \\
\end{bmatrix}
\]
Dijkstra’s Algorithm

- Inputs: $G^+, v_i, v_j \in V$
- Output: Shortest path from v_i to v_j in G^+
- Keep list of shortest known paths from v_i to all $v \in V$
- Initialize list so that all nodes have unknown path (P) with infinite length (L)
- Set $P(v_i)$ to $[v_i]$ and $L(v_i) = 0$
- While v_j is unmarked
 - Let v be the vertex with the shortest path so far (choose randomly for ties)
 - Mark v
 - For all unmarked $v_k \in N(v)$
 - Let w be from the edge (v, v_k, w)
 - If $L(v) + w < L(v_k)$, then set $P(v_k) = P(v).v$ and $L(v_k) = L(v) + w$
- Example on board
A directed acyclic graph (DAG) is a directed graph $G = (V, E)$ such that in the transitive closure of G $G^*_R = (V, E^*)$, $\forall v \in V, v \notin N(v)$.

Example on board
$G = (\{0, 1, 2, 3\}, \{(0, 1), (1, 2), (0, 2), (3, 0)\})$

The relation corresponding to a DAG G is not reflexive but it is antisymmetric. It may or may not be transitive.
Trees

- A *tree* is an undirected graph with no simple cycles
- A *rooted tree* is a DAG such that:
 - The undirected form of the graph is a tree
 - A root is a node with no incoming edges
 - All edges are directed away from the root
- Any edge in tree can be selected as root (different roots yield different trees)
- A *leaf* is a node with no outgoing edges
- The *branching factor* of a tree is the maximum number of children for each node
- If \(m \) is the branching factor, than the tree is *\(m \)-ary*. If \(m = 2 \), the tree is binary
Tree Properties

- A tree with n vertices has $n - 1$ edges.
- Inductive Proof (from text):
 - Basis: $n=1$. One node. No edges.
 - Inductive Hypothesis: Every tree with k vertices has $k - 1$ edges
 - Let T be a tree with $k + 1$ nodes. Let v be a leaf in T.
 - Removing v from T generates a tree T' with k nodes (T' has no simple circuits)
 - Therefore, T' has $k - 1$ edges.
 - There can be only one edge from any node in T' to v, otherwise a cycle would exist (can you prove why?)
- The **level** of a node is the length of the path from the root to the node
- The **height** of a tree is the maximum level of any node
- A tree of height h is *balanced* if all leaves are at level h or $h - 1$
- There are at most m^h leaves in an m-ary tree of height h
Section 22

Tree Traversals and Heaps
Sparse Graphs

- Consider complete binary tree \(T \) of height \(k \)
- \(T \) has \(2^k \) leaf nodes, \(2^k - 1 \) non-leaf nodes and \(2^{k+1} - 1 \) nodes total.
- Matrix representation \(2^{k+1} - 1 \times 2^{k+1} - 1 \) with \(2^{2k+2} - 2^{k+2} + 1 \) entries
- Each non-leaf node has 2 neighbors. All leaves have zero neighbors.
- Matrix has \(2^{k+1} - 2 \) non-zero values and \(2^{2k+2} - 3(2^{k+1}) + 3 \) zeros.
- Examples:
 - \(k = 3 \). Matrix has 225 entries. 14 are one. 211 are zero.
 - \(k = 10 \) Matrix has 4,190,290 entries. 4,188,163 are zero.
Alternative Representations

- **Adjacency List**
 - Array of values for each node (size 2^k).
 - Root is index location 0
 - Each entry is array with list of neighbors – “in order” if applicable
 - Weights become array of ordered pairs (neighbor, weight)

- **Tree Data Structure**
 - **Node Object**
 - Value with node references (pointers) (size 2^k)
 - References stored “in order” (if applicable)
 - Weights stored with references (ordered pair object)
 - Parent reference can be stored in object
 - Root object stored in known location (usually variable called “root”)
 - Leaf and non-leaf can be subclasses
Tree Traversals

- Recursive procedure for processing nodes
- Preorder traversal
 - Visit node first
 - Visit children in order
 - Return
- Add motivations
- Inorder traversal (more common in binary trees)
 - Visit first child
 - Visit node
 - Visit remaining children in order
 - Return
- Add motivations
- Postorder traversal
 - Visit children in order
 - Visit node
 - Return
- Add motivations
Depth First Search

- Values can be complex.
- Example: Game of tic-tac-toe (below)
- Spanning tree of graph (tree containing all nodes of graph)
- Algorithm
 - Visit children in order
 - Visit node
 - Return
- Example on board

```
  O
  X
  O X
  X
```
Breadth First Search

- Same applications
- Algorithm
 - Place root in queue
 - While queue not empty
 - Pop node N from queue
 - Visit N
 - Append children of N to queue
- Example on board

```
 O
 X  O  X
 X
```
Heap

- Tree structure (often binary)
- Parent always greater than or equal to children (max heap)
- Insertion:
 - Add new value to first available leaf
 - if child greater than parent, swap (continue until swap root)
- Example: 10,5,15,8,12,20,2
- Pop: (remove top element)
 - Move greater child into empty slot
 - continue until leaf moved
- Different insertion order can yield different heaps
- Example: 2,5,8,10,12,15,20