Section 1

Binary, Octal and Hex
Overview

- “Normal” numbers are base 10 (0,1,2,3,4,5,6,7,8,9)
- Base indicates the number of digits
- Any integer can be a base
 - Base 2 - (0,1)
 - Base 8 (octal) - (0,1,2,3,4,5,6,7)
 - Base 16 (hexadecimal or hex) - (0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F)
Representing values greater than base requires place value

Let b represent the base

Two digit number $xy = x \times b^1 + y \times b^0$

Three digit number $xyz = x \times b^2 + y \times b^1 + z \times b^0$

k digit number

$x_{k-1}x_{k-2}x_{k-3} \ldots x_0 = x_{k-1} \times b^{k-1} + x_{k-2} \times b^{k-2} + \ldots + x_0 \times b^0$

Examples:

- $22_{10} = 2 \times 10 + 2 \times 1 = 22$
- $22_{8} = 2 \times 8 + 2 \times 1 = 18_{10}$
- $22_{16} = 2 \times 16 + 2 \times 1 = 34_{10}$
Conversion

- Converting to base 10 uses place value
- Converting from base 10 uses algorithm
 - `Convert(n, b)`
 - `answer = ""`
 - `while n > 0`
 - `prepend n % b to answer`
 - `n ← n/b`
 - `return answer`
- Note that `n % b` can be non-digit
- Examples on board
Conversion Powers of Base

- Special case conversion to/from base b to base b^k
- Consider base 9 and base 3.
- Base 9 has 9 digits - 0,1,2,3,4,5,6,7,8.
- Two digits in base 3 has 9 values 00,01,02,10,11,12,20,21,22
- 1-1 correspondence of values
- Base 8 has 8 digits. Three digits in base 2 have 8 values.
- Convert each digit in base b^k into k digits in base b
- Convert k digits in base b (add leading zeros if needed) to one digit in base b^k
- Examples on board
Section 2

Propositional Logic
Propositional Logic

- A *proposition* is an expression which is true or false
- A statement is true if it is always true. Otherwise, it is false.
- Examples:
 - This class is CSI 2350. (true)
 - My name is Inigo Montoya. (false)
 - CSI 2350 is the best class at Baylor. (not a proposition)
- Use variables (often \(p \) and \(q \)) to represent statements
- If \(p \) is true, the negation (\(\neg p \)) is false.
- If \(p \) is false, the negation (\(\neg p \)) is true.
Propositional Statements

- The *conjunction* (\land) of two statements is true, both statements are true.
- The *disjunction* (\lor) of two statements is true if either (or both) statements are true.
- Examples:
 - Let p be “This class is CSI 2350”
 - Let q be “My name is Inigo Montoya”
 - $p \land q = \text{false}$
 - $p \lor q = \text{true}$
Implication

- An *implication* \(p \rightarrow q \) represents the statement “if \(p \) is true then \(q \) is true”
- Note: It **DOES NOT** represent the statement “if \(p \) is false, then \(q \) is false”
- An implication is true UNLESS when \(p \) is true, \(q \) is false
- Examples:
 - Let \(p \) be the statement, “\(n \) is even”
 - Let \(q \) be the statement, “\(n \) is odd”
 - Let \(r \) be the statement, “\(2n \) is even”
 - \(p \rightarrow r \) is true
 - \(q \rightarrow r \) is true
 - \(p \rightarrow q \) is false
 - \(q \rightarrow p \) is false
 - \(r \rightarrow p \) is false
- Equivalent to \(\neg p \lor q \)
Truth Tables

- Columns are propositions and propositional statements
- One row for every possible truth value of propositions

<table>
<thead>
<tr>
<th>p</th>
<th>q</th>
<th>$p \rightarrow q$</th>
<th>$q \rightarrow p$</th>
<th>$p \rightarrow q \land q \rightarrow p$</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>F</td>
<td>T</td>
<td>F</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>T</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
</tbody>
</table>

- $p \rightarrow q \land q \rightarrow p$ is called a biconditional and is represented as $p \leftrightarrow q$
- All values true, called tautology
- All values false, called contradiction
Knights and Knaves

- Logic puzzle that can be solved with truth tables
- In the land of knights and knaves, knights always tell the truth and knaves always lie.
- Example:
 - A says, ”B is a knight.” B says, ”2=2=5”.
 - B must be a knave
 - Therefore, A must also be a knave
 - See table below. Let p be “A is a knight.” Let q be “B is a knight.”

<table>
<thead>
<tr>
<th>p</th>
<th>q</th>
<th>$2 + 2 = 5$</th>
<th>$(r) \ q \leftrightarrow 2 + 2 = 5$</th>
<th>$(s) \ p \leftrightarrow q$</th>
<th>$r \land s$</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>T</td>
<td>F</td>
<td>F</td>
<td>T</td>
<td>F</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>F</td>
<td>T</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>F</td>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
</tbody>
</table>
Knights and Knaves Explained

► Translate “A says p” into prepositional statements
► If A is a knight, then p must be true
► If A is a knave, then p must be false
► $A \leftrightarrow p$ is equivalent
► Example:
► A says, “We’re both knaves.” B says, “No, we’re not.”
► A is a knave and B is a knight.

<table>
<thead>
<tr>
<th></th>
<th>(r)</th>
<th>(s)</th>
<th>(t)</th>
<th>(u)</th>
</tr>
</thead>
<tbody>
<tr>
<td>p</td>
<td>q</td>
<td>$\neg p \land \neg q$</td>
<td>$p \leftrightarrow r$</td>
<td>$\neg(\neg p \land \neg q)$</td>
</tr>
<tr>
<td>T</td>
<td>T</td>
<td>F</td>
<td>F</td>
<td>T</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>T</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>F</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>T</td>
<td>F</td>
<td>T</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>T</td>
<td>F</td>
<td>F</td>
</tr>
</tbody>
</table>
Section 3

Logical Equivalence and Sets
Truth Tables and DNF

- **Disjunctive normal form (DNF)** is $C_0 \lor C_1 \lor \ldots \lor C_{k-1}$ where each C_i is of the form $p \land q \land \ldots \land r$
- Given a truth table, the DNF can be generated by creating conjunct for each true result
- “Consider 3 people where exactly one is a knave.”
- $P = (p \land q \land \neg r) \lor (p \land \neg q \land r) \lor (\neg p \land q \land r)$

<table>
<thead>
<tr>
<th>p</th>
<th>q</th>
<th>r</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>T</td>
<td>T</td>
<td>F</td>
</tr>
<tr>
<td>T</td>
<td>T</td>
<td>F</td>
<td>T</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>T</td>
<td>F</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
</tbody>
</table>
Truth Tables and CNF

- **Conjunctive normal form (CNF)** is \(D_0 \land D_1 \land \ldots \land D_{k-1} \) where each \(D_i \) is of the form \(p \lor q \lor \ldots \lor r \)

- No easy way to go directly from CNF to truth table or vice versa

- \(Q = (\lnot p \lor \lnot q \lor \lnot r) \land (p \lor q) \land (p \lor r) \land (q \lor r) \)

<table>
<thead>
<tr>
<th>(p)</th>
<th>(q)</th>
<th>(r)</th>
<th>(\lnot p \lor \lnot q \lor \lnot r)</th>
<th>(p \lor q)</th>
<th>(p \lor r)</th>
<th>(q \lor r)</th>
<th>(Q)</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>T</td>
<td>T</td>
<td>F</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>F</td>
</tr>
<tr>
<td>T</td>
<td>T</td>
<td>F</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>F</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>F</td>
<td>T</td>
<td>T</td>
<td>F</td>
<td>T</td>
<td>F</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>T</td>
<td>T</td>
<td>F</td>
<td>F</td>
<td>T</td>
<td>F</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>F</td>
<td>T</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
</tbody>
</table>
Logical Equivalence

- Two propositions with same truth table are equivalent
- $P \equiv Q$
- $P \leftrightarrow Q$ is a tautology
- Consider $\neg(p \lor q) \equiv (\neg p \land \neg q)$ (DeMorgan’s Law)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th>P</th>
<th>Q</th>
<th>$\neg(p \lor q)$</th>
<th>$(\neg p \land \neg q)$</th>
<th>$P \leftrightarrow Q$</th>
</tr>
</thead>
<tbody>
<tr>
<td>p</td>
<td>q</td>
<td>$p \lor q$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T</td>
<td>T</td>
<td>T</td>
<td>F</td>
<td>F</td>
<td></td>
<td></td>
<td>T</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>T</td>
<td>F</td>
<td>F</td>
<td></td>
<td></td>
<td>T</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td></td>
<td></td>
<td>T</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>F</td>
<td>T</td>
<td>T</td>
<td></td>
<td></td>
<td>T</td>
</tr>
</tbody>
</table>
Logical Equivalences

- \(\neg(p \land q) \equiv (\neg p \lor \neg q) \) (DeMorgan’s Law)
- \(\neg(\neg p) \equiv p \)
- \(p \lor (q \land r) \equiv (p \lor q) \land (p \lor r) \) (Distribution Law)
- \(p \land (q \lor r) \equiv (p \land q) \lor (p \land r) \) (Distribution Law)
- \(p \lor (p \land q) \equiv p \) (Absorption Law)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th>(p \lor (q \land r))</th>
<th>(p \lor q)</th>
<th>(p \lor r)</th>
<th>((p \lor q) \land (p \lor r))</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>T</td>
<td>T</td>
<td>F</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>F</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>F</td>
<td>F</td>
<td>T</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>T</td>
<td>F</td>
<td>F</td>
<td>T</td>
<td>F</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
</tbody>
</table>
Deriving Equivalences

- Apply equivalences to derive new ones
- Equivalence is transitive (everything in chain is equivalent)
- Equivalence is associative \((p \equiv q \leftrightarrow q \equiv p)\)
- Show \(p \rightarrow q \equiv \neg q \rightarrow \neg p\)
- \(p \rightarrow q \equiv \neg p \lor q\) Definition implication
- \(\neg p \lor q \equiv q \lor \neg p\) Association
- \(q \lor \neg p \equiv \neg (\neg q) \lor \neg p\) Double negation
- \(\neg (\neg q) \lor \neg p \equiv \neg q \rightarrow \neg p\) Definition implication
Satisfiability

- A predicate is *satisfiable* if there exists an assignment of truth values such that the predicate evaluates to true. Otherwise, it is unsatisfiable.

- \(p \land \neg q \) is satisfiable when \(p = T \) and \(q = F \)

- \(p \rightarrow \neg p \) is satisfiable when \(p = F \)

- \(p \land (p \rightarrow \neg p) \) is unsatisfiable.

- A predicate in DNF is easy to determine if satisfiable. Check each conjunct. If no negated and unnegated same variable, then satisfiable.

- A predicate in CNF has no known efficient algorithm to determine if satisfiable (check all truth table)

- Fundamental problem in computer science \(P = NP \)
Introduction to Sets

- Collection of unordered distinct elements

- $S = \{A, -3, \text{“orange”}\}$

- Size (or *cardinality*) is number of elements $|S| = 3$

- \mathbb{N} is the set of all natural numbers

- \mathbb{Z} is the set of all integers

- \mathbb{Z}^+ is the set of all positive integers

- \mathbb{Q} is the set of all rational numbers

- \mathbb{R} is the set of all real numbers (others in text)

- Elements can be anything, even sets

- $S = \{\mathbb{N}, \mathbb{Q}, \mathbb{R}, \mathbb{Z}\}$

- $|S| = 4$

- Empty set (\emptyset) contains no elements
Subsets

- $S \subset T$ iff all elements in S are in T
- $S = T$ iff $S \subset T \land T \subset S$
- $\emptyset \subset S$ for any set S
- Proper and improper subsets
- Power set 2^S is the set of all subsets of S
- $2^\emptyset = \{\emptyset\}$. Therefore, $|2^\emptyset| = 1$
- Let $S = \{A, B\}.2^S = \{\emptyset, \{A\}, \{B\}, S\}$.
- $|2^S| = 2^{|S|}$.
Section 4

Sets and Quantification
Logical Predicates

- Statements can involve variables
- Let $P(x)$ be $x > 3$
- A *predicate* evaluates at statement with a particular value
 - $P(4)$ is true. $P(2)$ is false.
- Quantifiers can be used to evaluate predicate over a set
 - Universal quantification (for all – \forall) is true if true for all elements of set
 - Let $S = \{2, 4, 6\}$.
 - $\forall x \in S, P(x)$ is false.
 - Existential quantification (there exists – \exists) is true if true for any element of set
 - $\exists x \in S, P(x)$ is true
Quantifier Properties

- Two predicates are equivalent iff they hold the same truth value for any predicate and domain.
 \[\forall x(P(x) \land Q(x)) \equiv \forall x(P(x) \land \forall x(Q(x)) \]
- \[\neg \forall x P(x) \equiv \exists x(\neg P(x)) \]
- \[\neg \exists x P(x) \equiv \forall x(\neg P(x)) \]
- Order is important! Evaluate left to right.
- \[\forall \] tries to make statement false.
- \[\exists \] tries to make statement true.
- \[\forall x \in \mathbb{Z}, \exists y \in \mathbb{Z}, x + y = 0 \] is true
- \[\exists x \in \mathbb{Z}, \forall y \in \mathbb{Z}, x + y = 0 \] is false
- \[\exists x \in \mathbb{Z}, \forall y \in \mathbb{Z}, xy = 0 \] is true
Sets and Quantifiers

- Set builder notation.
- $S = \{x \in \mathbb{Z}^+ | P(x)\}$ is the set of all positive integers such that $P(x)$ is true.
- $S = \{x \in \mathbb{Z}^+ | x < 3\} = \{1, 2\}$
- $S = \{x \in \mathbb{Z}^+ | x > 3\}$. $T = \{x \in S | x < 6\}$. $T = \{4, 5\}$
- $S \subseteq T$ iff $\forall x \in S, x \in T$
- Union: $S \cup T = \{x | x \in S \lor x \in T\}$
- Intersection: $S \cap T = \{x | x \in S \land x \in T\}$
- Difference: $S - T = \{x | x \in S \land x \notin T\}$
- Complement: $\bar{S} = \{x | x \notin S\}$
- A universal set, U contains all possible values.
 - $\bar{S} = U - S$
 - $S - T = S \cap \bar{T} = S \cap (U - T) = (S \cap U) - (S \cap T) = S - (S \cap T)$
Proofs with Sets

- Prove \(S - T = S \cap \bar{T} \)

- Part 1. \(S - T \subset S \cap \bar{T} \)
 - Let \(x \in S - T \) (if no \(x \) exists, \(S - T = \emptyset \) and done)
 - \(x \in S \land x \notin T \) Definition of difference
 - \(x \in \bar{T} \) Definition of complement.
 - \(x \in S \cap \bar{T} \) Definition of intersection

- Part 2: \(S \cap \bar{T} \subset S - T \)
 - Let \(x \in S \cap \bar{T} \) (if no \(x \) exists, \(S \cap \bar{T} = \emptyset \) and done)
 - \(x \in S \land x \in \bar{T} \) Definition of intersection
 - \(x \notin T \) Definition of complement
 - \(x \in S - T \) Definition of difference

- QED
Generalized Set Properties

- $A \cup B = B \cup A$ and $A \cap B = B \cap A$
- $(A \cup B) \cup C = A \cup (B \cup C)$ and $(A \cap B) \cap C = A \cap (B \cap C)$
- Let $A_0, A_1, \ldots A_{k-1}$ be sets.
 - $\bigcup_{i=0}^{k-1} = A_0 \cup A_1 \cup \ldots \cup A_{k-1}$
 - $\bigcap_{i=0}^{k-1} = A_0 \cap A_1 \cap \ldots \cap A_{k-1}$
Section 5

Proofs
Proof Techniques

- A proof is a convincing argument.
- Set of premises (things which are true at the start)
- Set of logical statements (which must be valid)
- Set of conclusions (which are now known to be true)
- Example:
 - Prove $S - T = S - (S \cap T)$
 - Premise: S and T are sets
 - Logical Statements: Set identities
 - Set of conclusions: $x \in S - T \iff x \in S - (S \cap T)$
Example Proof

- Proof $S - T = S - (S \cap T)$:
 - There are two items to show. (1) $x \in S - T \rightarrow x \in S - (S \cap T)$ and (2) $x \notin S - T \rightarrow x \notin S - (S \cap T)$
 - Case 1: $x \in S - T \rightarrow x \in S - (S \cap T)$
 - $x \in S - T \rightarrow x \in S \land x \notin T$
 - $\therefore x \notin S \cap T$
 - $\therefore x \in S - (S \cap T)$
 - Case 2: $x \notin S - T \rightarrow x \notin S - (S \cap T)$
 - $x \notin S - T \rightarrow x \notin S - (S \cap T) \equiv x \in S - (S \cap T) \rightarrow x \in S - T$ (why?)
 - $x \in S - (S \cap T) \rightarrow x \in S \land x \notin (S \cap T)$
 - $\therefore x \in S \land (x \notin S \lor x \notin T)$
 - $\therefore (x \in S \land x \notin S) \lor (x \in S \land x \notin T)$
 - $\therefore x \in S \land x \notin T$
 - $\therefore x \in S - T$
Valid Logical Statements

- $p, p \rightarrow q, \therefore q$ - modus ponens
- $\neg q, p \rightarrow q, \therefore \neg p$ - modus tollens
- $p \rightarrow q, q \rightarrow r, \therefore p \rightarrow r$ - Hypothetical syllogism
- $p \lor q, \neg p, \therefore q$ - Disjunctive syllogism
- $\forall x P(x), \therefore P(c)$ - Universal instantiation
- $P(c)$ for an arbitrary $c, \therefore \forall x P(x)$ - Universal generalization
Proof by Contradiction

- Assume system is logically consistent
- Therefore, either p or $\neg p$ can be true, but not both
- Start by assuming $\neg p$ is true
- Often p is implication ($p \rightarrow q$)
- Negation of implication $\neg(\neg p \lor q) \equiv p \land \neg q$
- Apply logically sound statements
- Reach clearly false statement
- Therefore, $\neg p$ cannot be true, so p must be true
Contradiction Proof Example

- Prove that if $n \in \mathbb{Z} \land n^3 + 5$ is odd, then n is even
- $n \in \mathbb{Z} \land (n^3 + 5) \% 2 = 1 \rightarrow n \% 2 = 0$
- Assume not. Therefore $(n^3 + 5) \% 2 = 1 \land n \% 2 = 1$
- $\therefore \exists k \in \mathbb{Z}, n = 2k + 1$
- $\therefore n^3 + 5 = 8k^3 + 12k^2 + 6k + 1 + 5$
- $8k^3$ is even, $12k^2$ is even, $6k$ is even, and 6 is even.
- Since the sum of two even numbers is even, $8k^3 + 12k^2$ and $6k + 6$ are even
- Similarly, $(8k^3 + 12k^2) + (6k + 6)$ is even
- Since an integer cannot be both even and odd, we have a contradiction!
Counter Example

- Best way to prove something false
- Theorem: $\forall x \in \mathbb{Z}, x^2 > x$
- Counter example: Let $x = 0$. $x^2 = 0 = x$, so theorem is false.
- Theorem: $\exists y, \forall x, xy = 1$
- Consider x and $x + 1$.
 - $xy = 1$ and $y(x + 1) = xy + y = 1$
 - $\therefore 1 + y = 1$, so $y = 0$
- $0x = 0 \neq 1$
Section 6

Sets, Tuples and Relations
Tuple

- A tuple is an ordered collection of elements. It may or may not contain duplicates. Similar to an array.
- Each item in a tuple can be accessed by its location.
- Standard notation not as common. We will use parenthesis to denote a tuple and brackets to note the index of an element.
- Examples:

 - $t_0 = (1, 2, 3, 1, 2, 3)$
 - $t_1 = ("orange", \emptyset, 42)$
 - $t_2 = (\{0, 1\}, (0, 0))$

- t_0 is a 6-tuple $t_0[0] = 1$
- t_1 is a 3-tuple (also called a triple) where $t_1[1] = \emptyset$.
- t_2 is a 2-tuple, usually called an ordered pair, where $t_2[1] = (0, 0)$ and $t_2[1][1] = 0$.

Let S and T be sets. The *cross product* or *Cartesian product* $S \times T$ is a set of ordered pairs where the first element is from S and the second element is from T. All possible combinations are in the cross product.

Example

- Let $S = \{a, b, c\}$.
- Let $T = \{1, 2\}$.
- $S \times T = \{(a, 1), (a, 2), (b, 1), (b, 2), (c, 1), (c, 2)\}$

Note that $(1, a) \notin S \times T$

$|S \times T| = |S| \times |T|$

Taking the cross product of k sets generates a k-tuple where the elements are from the corresponding sets.
A Relation is a subset of the Cartesian product of an ordered collection of sets such that each tuple satisfies a predicate P.

Example:

Let $S_0 = \{1, 2, 3\}$, $S_1 = \{“a”, “b”, “c”\}$, $S_2 = \{0, 3\}$.

Let $R_0 = \{(a, b, c) | a \in S_0, b \in S_1, c \in S_2, b = “b” \land a \geq c\}$

$R_0 = \{(1, “b”, 0), (2, “b”, 0), (3, “b”, 0), (3, “b”, 3)\}$

Let $R_1 = \{(a, b, c) | a \in S_0, b \in S_1, c \in S_2, a = c\}$

$R_1 = \{(3, “a”, 3), (3, “b”, 3), (3, “c”, 3)\}$

Since relations are sets, set operators can be applied. However, the result may not be a relation.

$R_0 \cup S_0 = \{(1, “b”, 0), (2, “b”, 0), (3, “b”, 0), 1, 2, 3\}$.

Set operations on two relations over the same ordered collection of sets, is a relation.

$R_0 \cap R_1 = \{(3, “b”, 3)\}$
Properties of Relations

- Relations between a set and itself ($R \subset A \times A$) have special properties

- **Reflexive**: $\forall a \in A, R(a, a)$
 - $R = \{(z_0, z_1) | z_0, z_1 \in \mathbb{Z}, z_0 \leq z_1\}$ is reflexive
 - Proof: $k \leq k$ is true for all integers.
 - $R = \{(z_0, z_1) | z_0, z_1 \in \mathbb{Z}, z_0 < z_1\}$ is NOT reflexive
 - Counterexample: $3 \in \mathbb{Z}, (3, 3) \notin R$

- **Symmetric**: $\forall a, b \in A, R(a, b) \rightarrow R(b, a)$
 - $R = \{(z_0, z_1) | z_0, z_1 \in \mathbb{Z}, z_0 \leq z_1\}$ is NOT symmetric
 - Counterexample: $3 < 7 \rightarrow (3, 7) \in R. 7 \not< 3, \therefore (7, 3) \notin R$
 - $R = \{(z_0, z_1) | z_0, z_1 \in \mathbb{Z}, z_0 = z_1\}$ is symmetric (and reflexive)
 - Proof (symmetric): Follows from commutative property of equality
 - Proof (reflexive): Follows from reflexive property of equality
 - $R = \{(z_0, z_1) | z_0, z_1 \in \mathbb{Z}, z_0 \text{ and } z_1 \text{ are relatively prime}\}$ is symmetric (and not reflexive)
 - Proof (symmetric): $\gcd(a, b) = \gcd(b, a)$
 - Counterexample (not reflexive): Consider 6. $\gcd(6, 6) > 1$
Properties of Relations

- **Antisymmetric** (poorly named):
 \[\forall a, b \in A, R(a, b) \land R(b, a) \rightarrow a = b \]
 - \[R = \{(z_0, z_1) | z_0, z_1 \in \mathbb{Z}, z_0 \leq z_1\} \] is antisymmetric
 - Proof: \(a \leq b \land b \leq a \rightarrow a = b \)
 - \[R = \{(z_0, z_1) | z_0, z_1 \in \mathbb{Z}, z_0 = z_1\} \] is antisymmetric
 - Proof: Follows from commutative property of equality
 - \[R = \{(z_0, z_1) | z_0, z_1 \in \mathbb{Z}, z_0 \text{ and } z_1 \text{ are relatively prime}\} \] is NOT antisymmetric
 - Counterexample: \(\gcd(5, 8) = 1, \gcd(8, 5) = 1, 5 \neq 8 \)

- **Transitive**:
 \[R(a, b) \land R(b, c) \rightarrow R(a, c) \]
 - \[R = \{(z_0, z_1) | z_0, z_1 \in \mathbb{Z}, z_0 \leq z_1\} \] is transitive
 - Proof: \(a \leq b \land b \leq c \rightarrow a \leq c \)
 - \[R = \{(z_0, z_1) | z_0, z_1 \in \mathbb{Z}, z_0 = z_1\} \] is transitive
 - Proof: Follows from the transitive property of equality
 - \[R = \{(z_0, z_1) | z_0, z_1 \in \mathbb{Z}, z_0 \text{ and } z_1 \text{ are relatively prime}\} \] is NOT transitive
 - Counterexample: \(\gcd(5, 8) = 1, \gcd(8, 15) = 1, \gcd(5, 15) = 5 \)
Compositions

- Let S, T and U be arbitrary sets.
- Let R_0 be a relation on (S, T) and R_1 be a relation on (T, U).
- The composition $R_C = R_1 \circ R_0$ is a relation on (S, U) such that $\forall (s, u) \in R_C$, $\exists (s, t) \in R_0 \land (t, u) \in R_1$.
- Example:
 1. $R_0 = \{(1, 1), (1, -1), (4, 2), (4, -2)\}$
 2. $R_1 = \{(1, 0), (1, 2), (2, 1), (2, 3)\}$
 3. $R_1 \circ R_0 = \{(1, 0), (1, 2), (4, 1), (4, 3)\}$
- Not all elements in either relation must be used. Composition can be empty set.
- If relation is on single set, can take “powers” by composition.
- $R^n = R \circ R^{n-1}$.
- Example: $A = \{1, 2, 3\}$. $R = \{(1, 2), (2, 3), (3, 1)\}$
- $R^2 = R \circ R = \{(1, 3), (2, 1), (3, 2)\}$
- $R^3 = R^2 \circ R = \{(1, 1), (2, 2), (3, 3)\}$
Section 7

Functions
A function is a relation over two sets such that the first element is unique.

\[f : A \to B = \{(a, b) | \forall t, t' \in f, t[0] = t'[0] \to t = t'\} \]

\[f(a) \in B. \cup_{a \in A} f(a) \subset B \] Also denoted \(f(A) \subset B \).

Examples: Let \(A, B = \mathbb{Z} \) and \(x \in \mathbb{Z} \)

\[f(x) = x + 2 = \{(0, 2), (1, 3), (-1, 1)\ldots\} \]

\[f(x) = x^2 = \{(0, 0), (1, 1), (-1, 1)\ldots\} \]

\[f(x) = \sqrt{x} = \{(0, 0)(1, 1), (1, -1)\ldots\} \text{ NOT A FUNCTION!} \]
Function Terminology

- Let \(f : A \rightarrow B, f(a) = b \) and \(g : A \rightarrow B, g(a) = b \)
- \(A \) is the domain of \(f \)
- \(B \) is the codomain of \(f \)
- \(\bigcup_{a \in A} f(a) \) is the range of \(f \)
- \(b \) is the image of \(a \)
- \(a \) is the preimage of \(b \)
- Two functions \(f = g \) if \(f \subset g \land g \subset f \) and \(f, g \) have same domain and codomain.
- Let \(B = \mathbb{R} \). Then \((f + g)(x) = f(x) + g(x)\) and \((fg)(x) = f(x)g(x)\)
- Let \(S \subset A, f(S) = \{x | \exists s \in S, (x = f(s))\}\)
A function is *one-to-one* or an *injection* iff $f(a) = f(b) \rightarrow a = b$.

Note: $|A| > |B|$ implies f is not 1-1

Examples: $f : A \rightarrow B$, $A = \{1, 2, 3\}$,
- $B = \{1, 2, 3, 4\}, f(a) = a, f = \{((1, 1), (2, 2), (3, 3))\}$
- $B = \{1, 2, 3, 4\} f(a) = \lceil a/2 \rceil, f = \{(1, 1), (2, 1), (3, 2)\}$ NOT 1-1

A function is *onto* or an *surjection* iff $\bigcup_{a \in A} f(a) = B$.

Note $|B| > |A|$ implies f is not onto

Examples:
- $B = \{1, 2, 3\} f(a) = a$ onto and 1-1
- $B = \{1, 2, 3\} f(a) = \lceil a/2 \rceil$, NOT onto

A function is a *bijection* if it is 1-1 and onto
Function Inverse and Composition

- Given \(f : A \to B, f^{-1} : B \to A = \{(b, a) | (a, b) \in f\} \)
- \(f \) must be a bijection for \(f^{-1} \) to be a function
 - Not onto implies \(f^{-1} \) is undefined for some elements in domain
 - Not 1-1 implies \(\exists x f^{-1}(x) \) is not unique
- Composition of functions same as composition of relations
- \(f : A \to B, g : B \to C. (g \circ f)(x) = g(f(a)) \)
- Examples:
 - \(f^{-1}(f(x)) = x \)
 - \(f(x) = 2x + 1. g(x) = x^2. g(f(x)) = 4x^2 + 4x + 1. f(g(X)) = 2x^2 + 1 \)
 - \(f(x) = 1. g(x) = x + 1. g(f(x)) = 2. f(g(x)) = 1. \)
Section 8

Matrices
Matrix Overview

- Given two k-tuples, A and B, provides a value for each element in $A \times B$
- Similar to relations with sets replaced by tuples and predicate replaced by value
- Each element in A corresponds to row in M
- Each element in B corresponds to column in M
- Example - Powers of numbers (Matrix M).
 $A = (1, 2, 3). B = (0, 1, 2, 3)$

$$
M = \begin{bmatrix}
1 & 1 & 1 & 1 \\
1 & 2 & 4 & 8 \\
1 & 3 & 9 & 27
\end{bmatrix}
$$

- m rows and n cols is $m \times n$ matrix (M is 3x4).
- $m=n$ is square matrix
- Element $M_{i,j}$ where i is row number and j is column number
Matrix Addition

- Requires M, N be same size
- $M + N = L \rightarrow \forall i, j L_{i,j} = M_{i,j} + N_{i,j}$

\[
\begin{bmatrix}
1 & 1 & 1 & 1 \\
2 & 1 & 2 & 4 \\
3 & 1 & 3 & 9
\end{bmatrix}
+
\begin{bmatrix}
1 & 2 & 3 & 4 \\
5 & 6 & 7 & 8 \\
9 & 10 & 11 & 12
\end{bmatrix}
=
\begin{bmatrix}
2 & 3 & 4 & 5 \\
7 & 7 & 9 & 12 \\
12 & 11 & 14 & 21
\end{bmatrix}
\]
Matrix Multiplication

- Columns in M must equal rows in N
- M is $m \times k$, N is $k \times n$, L is $m \times N$
- $L_{i,j} = \sum_{h=1}^{k} M_{i,h} \times N_{h,j}$

$$\begin{bmatrix}
1 & 1 & 1 & 1 \\
2 & 1 & 2 & 4 \\
3 & 1 & 3 & 9
\end{bmatrix} \times \begin{bmatrix}
1 & 2 \\
5 & 6 \\
9 & 10 \\
11 & 12
\end{bmatrix} = \begin{bmatrix}
26 & 30 \\
69 & 78 \\
134 & 150
\end{bmatrix}$$

- Example:
 $L_{2,2} = \sum_{h=1}^{4} M_{2,h} \times N_{h,2} = 2 \times 2 + 1 \times 6 + 2 \times 10 + 4 \times 12 = 78$
- Example:
 $L_{1,2} = \sum_{h=1}^{4} M_{1,h} \times N_{h,2} = 1 \times 2 + 1 \times 6 + 1 \times 10 + 1 \times 12 = 30$
- NOT commutative (e.g., $M \times N \neq N \times M$, see above)
Identity Matrix and Transposition

- **Identity matrix** (usually \(I \))
 - Square
 - Diagonal values are 1; all other values are 0
 - \(M \times I = I \times M = M \)

- **Transpose of** \(M = M^t \)
 - \(M^t_{i,j} = M_{j,i} \)
 - \(M \) is symmetric if \(M = M^t \) (note: must be square)

\[
M = \begin{bmatrix}
1 & 1 & 1 & 1 \\
2 & 1 & 2 & 4 \\
3 & 1 & 3 & 9 \\
\end{bmatrix} \quad \rightarrow \quad M^t = \begin{bmatrix}
1 & 2 & 3 \\
1 & 1 & 1 \\
1 & 2 & 3 \\
1 & 4 & 9 \\
\end{bmatrix}
\]
Matrix Powers

Let M be a square $n \times n$ matrix.

- $M^0 = I$
- $M^1 = IM = M$
- $M^k = M^{k-1}M$

\[
M = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} \quad M^0 = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \quad M^2 = \begin{bmatrix} 7 & 10 \\ 15 & 22 \end{bmatrix} \quad M^3 = \begin{bmatrix} 37 & 54 \\ 81 & 118 \end{bmatrix}
\]
Boolean Matrices

- A matrix M such that all values are $T(1)$ or $F(0)$
- Let M and N be boolean matrices. $M \lor N = L$ (join)
 \[L_{i,j} = M_{i,j} \lor N_{i,j} \]
- Let M and N be boolean matrices. $M \land N = L$ (meet)
 \[L_{i,j} = M_{i,j} \land N_{i,j} \]
- Matrix multiplication of boolean matrices is disjunction of conjuncts of terms
- M, N are boolean matrices. $M \oslash N = L$
 \[L_{i,j} = \bigvee_{h=1}^{k}(M_{i,h} \land N_{h,j}) \]
- Example:

\[
M = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix} \quad N = \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 1 & 0 \end{bmatrix} \quad L = \begin{bmatrix} 1 & 1 \\ 0 & 1 \\ 0 & 0 \end{bmatrix}
\]
Let A be an arbitrary set of k elements, and $R(A, A)$

Let A' be a k-tuple of the elements in A with an arbitrary order.

Let M be a boolean matrix over $A' \times A'$, such that $(a_i, a_j) \in R \iff M[i][j] = 1$

Example:

Let A be a set of three volunteers

$R(A, A) = \{(a, b) | a, b \in A, a \text{ “taller than” } b\}$

Order elements in A by first name (alphabetical)

M on board

Note: M is square. Ordering is same for columns and rows.
Properties of Relations with Matrices

- Given \(R(A, A) \) and \(M \) defined as before.
- If \(M \) main diagonal is all 1’s, \(R \) is reflexive
- If \(M = M^t \), \(R \) is symmetric
- If \(M \land M^t \) is all zero except the main diagonal, \(R \) is antisymmetric
- If \(\lor_{i=1}^{k} M^i = M \), \(R \) is transitive
Section 9

Summations and Induction
Summations

- Add the terms in a sequence
- Uses \sum
- Examples:
 - $\sum_{j=1}^{n} j = \frac{n(n + 1)}{2}$
 - $\sum_{j=1}^{n} j^2 = \frac{n(n + 1)(2n + 1)}{6}$
 - $\sum_{j=1}^{n} 2j + 3 = 2 \sum_{j=1}^{n} j + \sum_{j=1}^{n} 3 = 2 \frac{n(n + 1)}{2} + 3n = n^2 + 4n$
 - $\sum_{j=0}^{n} ar^j = \frac{ar^{n+1} - a}{r - 1}[r \neq 1], (n + 1)a[r = 1]$
 - Let $S = \{1, 2, 4, 8\}$ then $\sum_{x \in S} x = 1 + 2 + 4 + 8 = 15$
Double Summations

- Summation over two variables
- Inner and outer loop
- Examples:
 - $\sum_{i=1}^{4} \sum_{j=1}^{3} i \cdot j = 1 + 2 + 3 + 2 + 4 + 6 + 3 + 6 + 9 + 4 + 8 + 12 = 60$
 - $\sum_{i=1}^{4} \sum_{j=1}^{3} i \cdot j = \sum_{i=1}^{4} (i + 2i + 3i) = \sum_{i=1}^{4} 6i = 6 \cdot \sum_{i=1}^{4} i = 6 \cdot 10 = 60$
Proof technique for showing infinite series is true
- Require incremental progress
- Basis – Initial step (usually very easy to show)
- Induction Hypothesis (IH) – Theorem is true for k elements
- NOTE! Have not proved IH is true. Just assuming it is.
- Show Theorem is true for $k + 1$ elements
- Therefore, initially true. Basis is now IH for next step. Now have IH for following step, etc.
Induction Example

- Summations “easily” shown by induction (proof simple; algebra can be tricky)
- Prove $\sum_{i=1}^{n} i^3 = (n(n + 1)/2)^2$
- Basis: $P(1). \ 1^3 = 1 = (1(2)/2)^2$
- IH: $\sum_{i=1}^{k} i^3 = (k(k + 1)/2)^2$
- Let $n = k + 1$.
- $\sum_{i=1}^{k+1} i^3 = \sum_{i=1}^{k} i^3 + (k + 1)^3$
- By IH, $\sum_{i=1}^{k+1} i^3 = (k(k + 1)/2)^2 + (k + 1)^3$
- $= (((k^2 + k)/2)^2 + k^3 + 3k^2 + 3k + 1$
- $= (k^4 + 2k^3 + k^2)/4 + k^3 + 3k^2 + 3k + 1$
- $= (k^4 + 2k^3 + k^2 + 4k^3 + 12k^2 + 12k + 4)/4$
- $= (k^4 + 6k^3 + 13k^2 + 12k + 4)/4$
- Note that $((k + 1)(k + 2)/2)^2 = ((k^2 + 3k + 2)/2)^2 = (k^4 + 3k^3 + 2k^2 + 3k^3 + 9k^2 + 6k + 2k^2 + 6k + 4)/4$
- $= (k^4 + 6k^3 + 13k^2 + 12k + 4)/4$
- So $\sum_{i=1}^{k+1} i^3 = (((k + 1)(k + 2)/2)^2$
Induction Example

- Prove $x \geq 4 \rightarrow x \geq 2 \times \log(x)$
 - Lemma: $x > 3 \rightarrow x^2 \geq 2x + 1$
 - Basis $P(3)$. $3^2 > 2 \times 3 + 1$
 - IH: $x = k \rightarrow k^2 > 2k + 1$
 - Let $x = k + 1$. $x^2 = k^2 + 2k + 1$.
 - $> 2k + 1 + 2k + 1$
 - $> 2k + 3$ (since $2K > 1$)
 - $> 2(k + 1) + 1$
 - Basis: $P(4)$. $4 \geq 2 \times \log(4) = 4$
 - IH: $x = k \rightarrow k \geq 2 \times \log(k)$
 - Let $x = k + 1$.
 - By IH, $x \geq 2 \times \log(k) + 1$
 - $x \geq \log(k^2) + \log(2)$
 - $x \geq \log(2 \times k^2)$
 - $x > \log(k^2 + 2 \times k + 1)$ (by Lemma)
 - $x > \log((k + 1)^2) = 2 \times \log(k + 1) = 2 \times \log(x)$
Odd Man Pie Fights (from text)
 ▶ People stand in yard at distinct distances
 ▶ Throw pie at nearest neighbor
 ▶ Odd number of participants ensures at least 1 person is not hit

Technique - Induct over n for $P(2n + 1)$
Basis: $n = 1$, $P(3)$. Let (a, b) be closest pair. Then a hits b and b hits a. c hits whoever is closest to c, but nobody hits c
Odd Man Out Proof (cont’d)

- IH: Assume theorem is true for \(n = k, P(2 \times k + 1) \).
- Let \(n = k + 1 \). Therefore, want to show \(P(2 \times (k + 1) + 1) \) or \(P(2 \times k + 3) \).
- Let \((a, b)\) be the closest pair (all distances unique implies least element exists).
- Therefore, \(a \) hits \(b \) and \(b \) hits \(a \).
- Case I:
 - Someone else throws a pie at \(a \) or \(b \)
 - Therefore, at least 3 pies thrown at \(a \) and \(b \), leaving at most \(2k \) pies for \(2k + 1 \) people
- Case II:
 - Nobody throws a pie at \(a \) or \(b \)
 - Now \(2 \times (k + 1) \) people remain with pies
 - By IH, at least one is not hit
Induction Example

- Number of elements in 2^S (from text)
- Show $|2^S| = 2^{|S|}$
- Basis: \emptyset. The only subset of \emptyset is itself. $|2^S| = 1 = 2^0$
- IH: $|S| = k \rightarrow |2^S| = 2^k$
- Let $|T| = k + 1$. $T = S \cup \{a\}$ such that $S = T - \{a\}$.
- Let $X \subseteq S$. Therefore, $X \subseteq T$ and $X \cup \{a\} \subseteq T$.
- By IH. there are 2^k such subsets of S, and $2 \times 2^k = 2^{k+1}$ subsets of T.
Section 10

Recursion and Strong Induction
Strong (Complete) Induction

- IH is not just that $P(k)$ is true, but $P(1) \land P(2) \land P(3) \ldots \land P(k)$ is true
- Equivalent to Induction, but sometimes easier to use
- Example: Prove that every positive integer n can be written as a sum of distinct powers of 2
 - Basis: $n = 1. \ 2^0 = 1 = n$
 - IH: $\forall n \leq k, \ n$ can be written as a sum of distinct powers of 2
 - Let $n = k + 1$
 - Case I:
 - Let n be odd.
 - Since n is odd, k must be even.
 - By IH, let S be representation of the sum for k
 - Therefore, 2^0 cannot be in S
 - Therefore $n = (\text{representation for } k) + 2^0$.
Case II
- Let n be even.
- Therefore, $n/2$ is an integer such that $n/2 \leq k$.
- By IH, let S be representation of the sum for $n/2$.
- Multiplying S by 2 increases each exponent by 1. (DPMA)
- Therefore, S with each exponent increased by 1 is n.

Compare with normal induction
- Case I is the same
- Case II is more difficult
Proof?

- $n \in \mathbb{N} \rightarrow 5n = 0$ (include $0 \in \mathbb{N}$)
- Basis: $n = 0, 5 \times 0 = 0$
- IH For all $i < k, 5 \times i = 0$
- Prove for $k + 1$
- $k + 1 = i + j$ where i and j are less than k
- $5 \times (k + 1) = 5(i + j) = 5i + 5j = 0 + 0 = 0$
- QED
- Any problems?
Function Recursion

- Compute values of a function based on previous values in the function
- Specify the value at 0 (or first k values)
- Provide rule for $f(n)$ based on lower values of n
- Factorial: $f(0) = 1. \forall n, n > 0 \rightarrow f(n) = n \times f(n - 1)$.
- Fibonacci:
 $f(0) = 0, f(1) = 1. \forall n, n > 1 \rightarrow f(n) = f(n - 1) + f(n - 2)$
- Paradox:
 $f(0) = 0.5. \forall n, n > 1 \rightarrow f(n) = (1 - f(n - 1))/2 + f(n - 1)$
Set Recursion

- Compute elements in a set based on previous elements in the set.
- Provide rule for initial elements. Provide rule for adding new elements.
- Initial - $1 \in S$. Step - $s, t \in S \rightarrow s + t \in S$ Prove $S = \mathbb{Z}^+$
 (Note! s and t do not have to be unique!):
 - Clearly, $S \subseteq \mathbb{Z}^+$
 - Basis: $1 \in S$ by definition of S
 - IH: $k \in S$.
 - Since k and 1 are in S, by rule, $k + 1 \in S$
- Transitive Closure: Let $R(A, A)$ be a relation. The transitive closure of R (R plus all elements in $A \times A$ needed to make R transitive) is:
 - Initial $(a, b) \in R \rightarrow (a, b) \in R^*$
 - Step - $(a, b), (b, c) \in R \rightarrow (a, c) \in R^*$
Recursive Algorithm

- Compute results using previously computed results
- Provide rule for terminal case. Provide rule for recursive call.
- Example: factorial
 - fact(n)
 - if $n \leq 0$ return 1
 - else return $n \times fact(n - 1)$
- Example: gcd (note: $a < b$)
 - gcd(a,b)
 - if $a=0$ return b
 - return gcd($b\%a$, a)
Recursive Algorithm Example

- **Example: fibonacci (Problem?)**
 - `fib(a)`
 - if `a=0` return 0
 - if `a=1` return 1
 - return `fib(a-1)+fib(a-2)`

- **Example: Binary Search (Problem?)**
 - Let $A = [a_1, a_2, \ldots, a_n]$
 - `find(A, x, i, j)`
 - if $i \leq j$, then
 - if $a_i = x$ return i
 - else return 0
 - $m \leftarrow \lfloor (i+j)/2 \rfloor$
 - if $x > a_m$, then return `find(A, x, m + 1, j)`
 - else return `find(A, x, i, m)`
Section 11

The Big $\Omega\Theta$ Fraternity
Binary Search

- Input list of elements \([a_1, a_2, \ldots, a_n]\), search key \(x\)
- Output index of element matching \(x\), or 0 if not found
- Pseudocode
 - \(i \leftarrow 1\)
 - \(j \leftarrow n\)
 - while \((i < j)\)
 - \(m \leftarrow \lfloor(i + j)/2\rfloor\)
 - if \(x > a_m\) then \(i \leftarrow m + 1\)
 - else \(j \leftarrow m\)
 - if \(x = a_i\) then return \(i\)
 - else return 0
Binary Search Runtime

- Assume $n = 2^k$ elements in list
- After iteration, remaining list half of previous list size
- After k iterations, list is size 1
- $\log(n) = k$
- Worst case running time is $\log(n)$
Big O

- Let \(f \) and \(g \) be functions. \(f(x) \) is \(O(g(x)) \) if \(\exists C, k \) such that \(\forall n > k, f(x) \leq C \times g(x) \) Assume \(x \geq 0 \).
- Function \(f \) grows slower than function \(g \) for \(n > k \)
- NOTE: Can say ”is” or \(\in \) but = is misleading (although used frequently)
- NOTE: Existence proof. Find one \(C \) and one \(k \) (many may exist).
- Technique: Start with known \((x > k) \). Remember, we can select \(k \)
- Apply formulas to generate \(C \times g(x) \geq f(x) \)
Examples:

- \(f(x) = 17x + 11 \in O(g(x) = x^2) \). Let \(C = 2, k = 17 \).
 - \(x \geq 17 \rightarrow x^2 \geq 17x \)
 - \(\rightarrow x^2 + x^2 \geq 17x + 11 \)
 - \(\rightarrow 2 \times x^2 \geq 17x + 11 \)

- \(f(x) = x \log(x) \in O(g(x) = x^2) \). Let \(C = 1, k = 1 \)
 - \(x \geq 1 \rightarrow x \geq \log(x) \)
 - \(\rightarrow x^2 \geq x \log(x) \)

- \(f(x) = x^2 + x + 1 \in O(g(x) = x^2) \) Let \(C = 3, k = 1 \)
 - \(x \geq 1 \rightarrow x^2 \geq x \)
 - \(\rightarrow x^2 + x^2 \geq x^2 + x \)
 - \(\rightarrow x^2 + x^2 + x^2 \geq x^2 + x + 1 \)
 - \(\rightarrow 3 \times x^2 \geq x^2 + x + 1 \)
To show \(f(x) \) is not \(O(g(x)) \) must show no such \(C \) and \(k \) can exist. Proof by contradiction is helpful.

Example:

\(f(x) = x^2 \) is not \(O(g(x) = x) \).

Assume not. Therefore \(\exists C, k \) such that
\[
\forall x > k, f(x) \leq C \cdot g(x)
\]

Therefore, \(\forall x > k, x^2 \leq C \cdot x \).

Therefore, \(\forall x > k, x \leq C \), which is a contradiction.
Big Ω

- Let f and g be functions. $f(x)$ is $\Omega(g(x))$ if $\exists C, k$ such that $\forall n > k, f(x) \geq C \cdot g(x)$ Assume $x \geq 0$.
- Function f grows faster than function g for $n > k$
- $f(x)$ in $\Omega(g(x)) \iff g(x) \in O(f(x))$
- Example:
 - $f(x) = x^2$ is $\Omega(g(x) = 17x + 11)$ because $g(x) = 17x + 11$ is $O(f(x) = x^2)$
 - $f(x) = x^4/2$ is $\Omega(g(x) = x^2)$. Show $g(x) = x^2$ is $O(f(x) = x^4/2)$
 - Let $C = 1, k = 2$
 - $x \geq 2 \rightarrow x^2 \geq 2x$
 - $\rightarrow x^3 \geq 2x^2$
 - $\rightarrow x^4 \geq 2x^2$
 - $\rightarrow x^4/2 \geq x^2$
Let f and g be functions. if $f(x)$ is $\Omega(g(x))$ and $f(x)$ is $O(g(x))$, then $f(x)$ is $\Theta(g(x))$

Equivalent: $f(x)$ is $O(g(x))$ and $g(x)$ is $O(f(x))$

$f(x)$ is bounded above and below by $g(x)$

Example:

$f(x) = x^2 + x + 1$ is $\Theta(g(x) = x^2)$

Show $f(x)$ is $O(g(x))$, earlier slide.

Show $g(x)$ is $O(f(x))$. Let $C = 1, k = 1$.

$x \geq 1 \rightarrow x^2 + x \geq x^2$

$x^2 + x > x^2$

$x^2 + x + 1 \geq x^2.$
Show $f(x) = x^2$ is $O(g(x) = 2^x)$. Let $C = 1, k = 4$

$x \geq 4 \rightarrow x \geq 2 \log(x) \rightarrow x \geq \log(x^2) \rightarrow \log(2^x) \geq \log(x^2) \rightarrow 2^x \geq x^2$

Show $g(x) = 2^x$ is NOT $O(f(x) = x^2)$. Assume not.

$\exists C, k$ such that $\forall x \geq k, Cx^2 \geq 2^x$.

Therefore, $\forall x \geq k, \log(Cx^2) \geq \log(2^x)$

Let $a = \log(C)$. Therefore, $\forall x \geq k, a + 2 \log(x) \geq x$

Note that $\forall a \exists x$ s.t. $x > a + 2 \log(x)$. Consider $\max(x = 2^a, 16)$. Then $2^a > 3a$, which is true for $a \geq 4$.

Therefore, problems requiring exponential time are “harder” than quadratic problems (or any polynomial)

Such problems are called intractable
Satisfying CNF

- **Conjunctive normal form (CNF)** is \(D_0 \land D_1 \land \ldots \land D_{k-1} \)
 where each \(D_i \) is of the form \(p \lor q \lor \ldots \lor r \)
- Consider \(P = (p \lor q) \land (p \lor \neg q) \land (\neg p \lor q) \land (\neg p \lor \neg q) \)
- If any disjunct (i.e, \(p \lor q \)) is false under an assignment, that assignment does not satisfy \(P \)
- Truth table below indicates \(P \) is not satisfiable.
- Essentially, must try every possible combination of truth assignment
- Given \(x \) propositions, need \(2^x \) combinations of truth values.
- Requires exponential time (best so far)
- Note: Heuristics exist for efficiently determining satisfiability, but not in all cases

<table>
<thead>
<tr>
<th></th>
<th></th>
<th>(P)</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>T</td>
<td>F</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>F</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
</tbody>
</table>
P=NP?

- P - class of problems solvable in polynomial time
- NP - class of problems best solutions require exponential time
- Unknown if NP problems can be solved in polynomial time
- One of grand challenges of mathematics for 21st century (Millennium Problems)
Common Complexity Classes

<table>
<thead>
<tr>
<th>Complexity</th>
<th>Terminology</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\Theta(1)$</td>
<td>Constant</td>
</tr>
<tr>
<td>$\Theta(\log n)$</td>
<td>Logarithmic</td>
</tr>
<tr>
<td>$\Theta(n)$</td>
<td>Linear</td>
</tr>
<tr>
<td>$\Theta(n \log n)$</td>
<td>Linearithmic</td>
</tr>
<tr>
<td>$\Theta(n^c)$</td>
<td>Polynomial</td>
</tr>
<tr>
<td>$\Theta(c^n)(c > 1)$</td>
<td>Exponential</td>
</tr>
<tr>
<td>$\Theta(n!)$</td>
<td>Factorial</td>
</tr>
</tbody>
</table>
Section 12

Basic Counting
Product Rule

- Assume there are a set of tasks T. Let t_i represent an arbitrary task.
- Assume there are n_i ways to complete t_i.
- **Product Rule**: For a series of tasks, $t_0, t_1, \ldots, t_{k-1}$, there are $n_0 n_1 \ldots n_{k-1}$ ways to perform the series.
- **Examples**:
 - Assume one die is red and one die is black (both numbered 1-6). How many different rolls of the dice are possible? $6 \times 6 = 36$
 - (from text) How many bit strings of length 8 are possible? Each bit has two possibilities, $2 \times 2 = 2^8 = 64$
 - You draw five cards from a deck of 52 cards. How many different 5-card sets can you draw? $52 \times 51 \times 50 \times 49 \times 48 = 311,875,200$
 - Students in front row lineup. How many different ways can they be arranged? Solution on board.
Product Rule Complex Examples

- (from text) How many functions are from a set M with m elements to a set N with n elements?
 - A function is a set of ordered pairs with distinct first elements.
 - Changing one pair creates a new function.
 - Therefore, n functions with all the same except all possible first pair
 - Repeat for each element in M
 - $n \times n \times n \ldots \times n = n^m$

- (from text) How many 1-1 functions are from a set M with m elements to a set N with n elements?
 - A 1-1 function has distinct second elements.
 - If $n = m$, there are n possible pairs for first element, $n - 1$ for second, down to 1 for last element.
 $n \times (n - 1) \times (n - 2) \times \ldots \times 1 = n!$.
 - if $n > m$ there are no 1-1 functions.
 - if $n < m$, possibilities end when out of N elements,
 $n \times (n - 1) \times (n - 2) \times \ldots (n - m + 1)$ or $\frac{n!}{(n-m)!}$
Inclusion-Exclusion

▶ Given two sets A and B, $|A \cup B| = |A| + |B| - |A \cap B|$.
▶ Proof:
 ▶ Let $x \in A \cup B$. Therefore, $x \in A \lor x \in B$.
 ▶ Three cases:
 ▶ $x \in A \land x \in B$. Therefore, $x \in A \cap B$. Therefore, x counted once (added A, added B, subtracted $A \cap B$).
 ▶ $x \in A \land x \notin B$. Therefore x counted once (A).
 ▶ $x \notin A \land x \in B$. Therefore x counted once (B).
 ▶ X counted once on both sides.
▶ Venn diagram on board
▶ Example: Assume students can be double majors (more in reality). Ten students in a class. 8 are computer science majors and 5 are math majors. How many are double majors? $10 = 8 + 5 - x$, so $x = 3$.
Principle of Inclusion-Exclusion

- Extend to three sets, A, B and C.
- What happens with $$|A \cup B \cup C| = |A| + |B| + |C| - |A \cap B| - |A \cap C| - |B \cap C|$$
 Venn diagram on board (add $A \cap B \cap C$).
- Can generalize to n sets $A_1, A_2, A_3, \ldots A_n$ as

$$\left| \bigcup_{A_i} \right| = \sum_{1 \leq i \leq n} |A_i| - \sum_{1 \leq i < j \leq n} |A_i \cap A_j|$$

$$+ \sum_{k \% 2 = 1} |A_i \ldots A_k| - \sum_{k \% 2 = 0} |A_i \ldots A_k|$$
Sum and Subtraction Rules

- Let \(N \) and \(M \) be sets of ways to accomplish a task \(t \).

- **Sum Rule:** If \(M \cap N = \emptyset \), there are \(|M| + |N|\) ways to accomplish \(t \).

- Example: Let \(M \) be the set baseball teams. Let \(M \) be the set of football teams. A fan can only follow one team. There are \(|M| + |N|\) possible teams.

- Can be extended to any number of sets. Number is sum of elements in all sets.

- Can be extended to non-disjoint sets, called the **Subtraction Rule:** If \(M \) and \(N \) are two sets of ways to do a task. There are \(|M| + |N| - |M \cap N|\) ways to do the task.

- Example: Let \(M \) be the set of cities with a baseball team. Let \(N \) be the set of cities with a football team. A fan can only follow teams from one city. There are \(|M| + |N| - |M \cap N|\) possible cities.

- Can be extended to any number of sets. Number is from General Inclusion-Exclusion Principle.
In computer science, trees grow upside down (root at top; leaves at bottom)

Tree diagram: Root (node) is first choice

Repeat until no possible choices: Each possible next choice is branch from previous node.

Leaves have no "children"

Example: Students in front row lineup. (Solution on board)
Note: Root is empty.

For large problems, unwieldy

Example: How many different ways can 5 cards be drawn from a deck of 52 cards?
Pigeonhole Principle

- Simple. Can’t put more than one pigeon in a pigeonhole.
- Formal: If $k \in \mathbb{Z}^+$ and $k + 1$ objects are placed in k boxes, there exists a box with more than one object.
- Useful: If $f : A \rightarrow B$, $|A| > |B|$, then f cannot be one-to-one.
- Interesting: Let $S = \{k \in \mathbb{Z}^+ | 1 \leq k \leq 2 \times n\}$ where $|S| = n$. Show that there exists $x, y \in S$ such that $x \% y = 0$ (i.e., y divides x).
- Proof: (from text)
 - Lemma: Any number can be represented as $2^i \times q$ where $i \geq 0$ and q is odd. (Proof on homework)
 - $\forall x \in S, x = 2^i \times q$, where $q < 2n$
 - Pigeonhole principle: There are only n odd numbers less than $2n$
 - $\exists x, y \in S$ such that $x = 2^i \times q$, $y = 2^j \times q$. WLOG, assume $i \geq j$.
 - Therefore, $x = 2^{i-j} \times y$, so $X \% y = 0$
Section 13

Permutations and Combinations
Overview

- Permutations are the number of arrangements of a set of items of a specific size
- Combinations are the number of subsets of a specific size
- The Binomial Theorem is a general representation of binomial coefficients
- Playing cards
 - 4 suits - spades, hearts, diamonds, clubs
 - 13 values - A, K, Q, J, 10, 9, 8, 7, 6, 5, 4, 3, 2
 - 52 total cards (+ jokers)
Permutations

- Battle - Card game where highest value wins (special rules for ties)
- Demonstration (Hearts only)
 - How many ways to arrange 6 cards? (Hint: Product rule.)
 - How many ways to arrange 3 of 6 cards?
 - How many ways to arrange k of 6 cards?
 - How many ways to arrange k of n cards?
Permutation Formulae

- All arrangements: $n(n - 1)(n - 2) \ldots (1) = n!$
- Arrangements of size r: $n(n - 1)(n - 2) \ldots n - (r - 1)$
 - Last term is also $n - r + 1$
 - $(n - r)! = (n - r)(n - r - 1)(n - r - 2) \ldots (1)$
 - $\frac{n!}{(n-r)!}$ yields arrangements of size r
- Formula: $P(n, r) = \frac{n!}{(n-r)!}$
- Note: if $n == r$ then $P(n, n)$ or $P(n) = \frac{n!}{(n-n)!} = \frac{n!}{0!} = n!$
Combinations

- Oh Heck - Card game with hands and “tricks”
- Demonstration (Hearts only)
 - Order of cards in hand does not matter
 - How many different hands of size 3 can be dealt?
 - Given my hand, how many different hands of size 3 can opponent have?
 - Given my hand, how many different hands of size 3 can opponent have with all cards lower than my highest?
Combination Formulae

- Number of permutations divided by the number that are the same (division rule)
 \[P(n, r)/P(r) = \frac{n!}{r!(n-r)!} = \frac{n!}{r!(n-r)!} \]

- Number of subsets of set \(S \) a given size
 - Size 0 is \(\emptyset \), only one \(\frac{n!}{0!(n-0)!} = 1 \)
 - Size \(n \) is \(S \), only one \(\frac{n!}{n!(n-n)!} = 1 \)
 - Size 1 subsets, each element is \(|S| \), \(\frac{n!}{1!(n-1)!} = n \)
 - Size \(n - 1 \) subsets, \(S \) with each element removed, number is \(|S| \), \(\frac{n!}{(n-1)!(n-(n-1))!} = n \)

- Formula: \(C(n, r) \) or \(\binom{n}{r} = \frac{n!}{r!(n-r)!} \)

- Note: \(\binom{n}{n} = \frac{n!}{n!0!} = 1 \) and \(\binom{n}{0} = \frac{n!}{n!0!} = 1 \)
Binomial Theorem

\[(x + y)^n = \sum_{k=0}^{n} \binom{n}{k} x^{n-k} y^k =
\binom{n}{0} x^n + \binom{n}{1} x^{n-1} y + \binom{n}{2} x^{n-2} y^2 + \ldots \binom{n}{n-1} x y^{n-1} + \binom{n}{n} y^n\]

▶ Can find coefficient for any term in binomial expansion
 ▶ Given \((2x + 3y)^4\), what is the coefficient for the \(x^2y^2\) term?
 ▶ \(\binom{4}{2}(2x)^2(3y)^2 = 6 \times 4 \times 9 = 216\)
 ▶ Shows \(\sum_{k=0}^{n} \binom{n}{k} = 2^n\) (from text)
 ▶ \(2^n = (1 + 1)^n = \sum_{k=0}^{n} \binom{n}{k} 1^{n-k} 1^k = \sum_{k=0}^{n} \binom{n}{k}\)
Pascal’s Triangle

- Example on board
- Pascal’s Identity: \(\binom{n+1}{k} = \binom{n}{k-1} + \binom{n}{k} \)
- Algebraic proof:
 - \(\binom{n+1}{k} = \frac{(n+1)!}{k!(n+1-k)!} \)
 - \(\binom{n}{k-1} = \frac{n!}{(k-1)!(n-(k-1))!} \)
 - \(= \frac{k*(k-1)!(n+1-k)!}{k*n!} \)
 - \(\binom{n}{k} = \frac{n!}{k!(n-k)!} \)
 - \(= \frac{(n+1-k)n!}{k!(n-k)!(n+1-k)!} = \frac{(n+1-k)n!}{k!(n+1-k)!} \)
 - \(\binom{n}{k-1} + \binom{n}{k} = \frac{k*n!}{k*(k-1)!(n+1-k)!} + \frac{(n+1-k)n!}{k!(n+1-k)!} \)
 - \(= \frac{k*n + (n+1-k)n!}{k!(n+1-k)!} = \frac{n*(k+n-k+1)}{k!(n+1-k)!} = \frac{(n+1)!}{k!(n+1-k)!} \)
Section 14

Probability
Finite Probability

- Let S be a set of equally likely outcomes – sample space.
- Let $E \subseteq S$ be a set of desired outcomes – event.
- $p(E) = \frac{|E|}{|S|}$ – probability of E

Examples (sample space is deck of cards):

- Probability of drawing a heart $p(\text{heart}) = \frac{13}{52} = \frac{1}{4}$
- Probability of drawing a king $p(\text{king}) = \frac{4}{52} = \frac{1}{13}$
- Probability of drawing king of hearts $p(\text{Kheart}) = \frac{1}{52}$
- Probability of drawing two hearts in a row (replacing your card) $p(2\text{hearts}) = \frac{169}{2704}$
 - Why? Two draws makes total outcomes is 52×52
 - 13 successes in each draw means 169 successful outcomes (product rule)
- Probability of drawing 5 hearts in a row (without replacement) $p(\text{flush}) = \frac{13 \times 12 \times 11 \times 10 \times 9}{52 \times 51 \times 50 \times 49 \times 48}$
Complements and Unions

- The complement of E (\bar{E}) is $S - E$. $p(\bar{E}) = 1 - p(E)$
- Probability of not drawing a heart $p(\text{heart}) = 1 - \frac{1}{4} = \frac{3}{4}$
- Sometimes much easier to calculate the complement
- The union of two events is $E_1 \cup E_2$.
 $p(E_1 \cup E_2) = p(E_1) + P(E_2) - P(E_1 \cap E_2)$
- $p(\text{king or heart}) = p(\text{king}) + p(\text{heart}) - p(K\text{heart}) = \frac{1}{13} + \frac{1}{4} - \frac{1}{52} = \frac{16}{52}$
Probability Theory

- Let S be a sample space
- Each element in S is assigned a probability ($p(s)$).
- $0 \leq p(s) \leq 1$
- $\sum_{s \in S} p(s) = 1$
- Function from S to set of probabilities is called probability distribution function
- If all probabilities are the same, uniform distribution $|S| = n, \forall s \in S, p(s) = 1/n$
- If E is a set of events, $p(E) = \sum_{s \in E} p(s)$
Conditional Probability

- Probability of event E given that event F has happened $p(E|F)$
- $p(E|F) = \frac{p(E \cap F)}{p(F)}$
- Example:
 - Given that 4 hearts in a row have been drawn, what is the probability that a 5th heart will be drawn?
 - $p(F) = p(4\text{hearts}) = \frac{13\times12\times11\times10}{52\times51\times50\times49}$
 - In this case, $p(E \cap F) = p(E) = p(\text{flush}) = \frac{13\times12\times11\times10\times9}{52\times51\times50\times49\times48}$
 - $p(E|F) = \frac{9}{48}$
Independence

- Two events are independent if one happening has no effect on the other happening.

Examples:
- I draw a 7 from a deck of cards and you draw a 10 from a different deck.
- I wear a hat and President Livingstone wears a hat.
- We have an exam in 2350 and Dr. Donahoo gives an exam in 4321.

- E and F are independent iff $p(E) \times p(F) = p(E \cap F)$

Different decks:
- $p(7) = 1/13$, $p(10) = 1/13$, $p(7 \land 10) = 1/169 \approx .0060$

Same decks: $p(7) = 1/13$, $p(10) = 1/13$, $p(7 \land 10) = 1/13 \times 4/51 = 4/663 \approx .0059$
Bernoulli Trials

- Probability of k successes of n independent trials with success p and failure $q = 1 - p$ is $\binom{n}{k} p^k q^{n-k}$

- Examples (replacing cards back in deck)
 - Probability of drawing 4 hearts out of 5 cards
 - $n = 5, k = 4$, $p = .25$, $q = .75$, $p(4H) = \binom{5}{4}.25^4.75 \approx .0146$
 - Probability of drawing at least 4 hearts out of 5 cards
 - $p(4H) + p(5H) = \binom{5}{4}.25^4.75 + \binom{5}{5}.25^5.75^0 = 0.015625$
 - Probability of drawing at least 2 hearts out of 5 cards
 - $1 - (p(0H) + p(1H)) = 1 - \binom{5}{0}.25^0.75^5 + \binom{5}{1}.25^1.75^4 \approx 0.367$
Random Variable

- Not random and not a variable
- Function from S to \mathbb{R} (assigns real number to each possible outcome)
- Example: (Replacing cards as before)
 - Draw 3 cards from a deck. The set of all possible outcomes is S.
 - Let $X(s)$ be the random variable of the number of times a heart is drawn, where $s \in S$
 - Quick demo
 - $\forall s \in S, 0 \leq X(s) \leq 3$
- Distribution of X on S is the set of pairs $(r, p(X = r))$ where $r \in X(s)$
- From example:
 - $(0, 0.421875), (1, 0.421875), (2, 0.140625), (3, 0.015625)$
Section 15

Expected Value and Variance
Expected Value

- Given a random variable X, the expected value of X is
- $E(X) = \sum_{s \in S} p(s)X(s)$
- Recall $X(s) = y$ means y is the number of interesting occurrences in event s
- Examples:
 - Assume cards 2-10 of hearts. Let X be the value of the card. Expected value of drawing a card:
 - $1/9 \times 2 + 1/9 \times 3 + 1/9 \times 4 + 1/9 \times 5 + 1/9 \times 6 + 1/9 \times 7 + 1/9 \times 8 + 1/9 \times 9 + 1/9 \times 10 = 6$
 - Assume J,Q,K have value 10 and A has value 11. Expected value of a card:
 - $E(X) = 1/13 \times (\sum_{k=2}^{9} k + 11) + 4/13 \times 10 = 95/13$
 - Assume 5 cards, consisting of 4 2s and 1 3.
 - $E(X) = .8 \times 2 + .2 \times 3 = 2.2$
The expected number of success of n Bernoulli trials with success p is $n \times p$.

Proof: (from text)

Let $X(s)$ be the number of successes out of n trials.

$p(X = k) = \binom{n}{k} p^k q^{n-k}$

$E(X) = \sum_{k=1}^{n} k \times \binom{n}{k} p^k q^{n-k}$ Note: $k = 0$ adds 0 to $E(X)$

$= \sum_{k=1}^{n} n \binom{n-1}{k-1} p^k q^{n-k}$

$= np \times \sum_{k=1}^{n} \binom{n-1}{k-1} p^{k-1} q^{n-k}$

$= np \times \sum_{j=0}^{n-1} \binom{n-1}{j} p^j q^{n-1-j}$ (by shifting index)

$= np \times (p + q)^{n-1}$ (by binomial theorem)

$= np$ (by $p + q = 1$)
Linearity

- Expected value of sum of random variables is sum of expected values

 \[E(X_1 + X_2 + \ldots + X_n) = E(X_1) + E(X_2) + \ldots + E(X_n) \]

- \[E(aX + b) = a \cdot E(X) + b \]

- Examples:

 - Sum of two cards (with replacement) is \(14 \frac{8}{13} \)

 - Sum of two die rolls is \(2 \cdot E(X) \) where

 \[E(X) = \frac{1}{6} \cdot \sum_{k=1}^{6} k = 21/6 \text{ or } 7 \]
Complex Example - Expected number of inversions in a polynomial

- A permutation P of integers $1 \ldots n$ is an arrangement of the numbers
- An inversion is where $i < j$ but $j \prec i$ in P
- Example: $P = (1, 3, 5, 2, 4)$ the inversions are $(2, 3), (2, 5), (4, 5)$
- Let $I_{i,j}$ be the random variable on the set of all permutations of the first n integers with $I_{i,j} = 1$ if (i, j) is an inversion on the permutation
- For the example, $I_{2,3}(P) = 1, I_{1,4} = 0$
- Let X be the random variable equal to the number of inversions, $X = \sum_{1 \leq i < j \leq n} I_{i,j}$
- For example, $X(P) = 3$
- $E(I_{i,j}) = 1 \times p(I_{i,j} = 1) + 0 \times p(I_{i,j} = 0) = 1/2$ (equally likely inversion as not)
- There are $\binom{n}{2}$ ways for 2 numbers to be arranged out of n
- $E(X) = \binom{n}{2} E(I_{i,j}) = \frac{n!}{(n-2)! \times 2 \times 2} = \frac{n \times (n-1)}{4}$
Average Case Complexity

- S is the possible inputs to the program
- $X : S \rightarrow \mathbb{R}$, such that $\forall s \in S, X(s)$ is the number of operations performed
- Let $p(s)$ be the probability of s being the input to the program
- $\sum_{s \in S} p(s)X(s)$ is the expected (or average) number of operations
Average Complexity Linear Search (text)

- Let p be the probability $x \in A$. Assume x is equally likely to be in any other location.
- Counting number of comparisons
- For each element, check to see if at end of array and compare value (2 comparisons per element)
- After loop, one comparison to see if past end of array
- Probability x is at element k is p/n
- Probability x is not in list is $q = 1 - p$
- If $x \in A$, then $\sum_{k=1}^{n} \frac{p}{n}(2k + 1) =$
 - $\frac{p}{n} \sum_{k=1}^{n} (2k + 1) = \frac{p}{n} \left(n + 2 \sum_{k=1}^{n} k \right) = \frac{p}{n} \left(n + 2 \cdot \frac{n(n+1)}{2} \right) = \frac{p}{n} \left(n + n(n+1) \right) = p \cdot (1 + n + 1) = p(n+2)$
- If $x \not\in A$, then $(2n + 2)q$
- $E(X) = p(n + 2) + (2n + 2)q$
Variance

Let X be a random variable on S

Variance on X (denoted $V(X)$) indicates the spread of values in $X(S)$

$V(X) = \sum_{s \in S} (X(s) - E(X))^2 p(s)$

Standard deviation $\sum(X) = \sqrt{V(X)}$

Example:

- Blackjack cards: $V(X) = \sum_{s \in S} (X(s) - 7 \frac{4}{13})^2 \cdot p(s) =$
 $(-5 \frac{4}{13})^2 \cdot 1/13 + (-4 \frac{4}{13})^2 \cdot 1/13 + \ldots + (2 \frac{9}{13})^2 \cdot 4/13 + (3 \frac{9}{13})^2 \cdot 1/13$
 ≈ 8.5
 $\sum(X) \approx 2.9$
Variance Continued

- \(V(X) = E(X^2) - E(X)^2 \)

- **Example:**
 - Blackjack cards: \(E(X)^2 = (7 \frac{4}{13})^2 \approx 53.4 \)
 - \(E(X^2) = 1/13 \times (\sum_{k=2}^{9} k^2 + 121) + 4/13 \times 100 = 784/13 \approx 61.9 \)
 - \(\approx 8.5 \)
 - \(\sum(X) \approx 2.9 \)

- Let \(E(X) = \mu \). Then \(V(X) = E((X - \mu)^2) \)
 - \(= 1/13 \times (\sum_{k=2}^{9} (k - 7 \frac{4}{13})^2 + (11 - 7 \frac{4}{13})^2) + 4/13(10 - 7 \frac{4}{13})^2 = 8.5 \)

- Let \(X \) be a random variable such that \(X(t) = 1 \) if a Bernoulli trial is successful and \(X(t) = 0 \) otherwise.

- Note: Single trial, so \(n = 1 \) for Bernoulli distribution.

- \(E(X) = p \times 1 + q \times 0 = p \).

 \(E(X^2) = p \times 1^2 + q \times 0^2 = p \).

- \(E(X)^2 = p^2 \).

 \(V(X) = p - p^2 = p(1 - p) = pq \).
Variance Equations

- Bienayme’s Formula
- If X and Y are independent random variables on S, then
 \[V(X + Y) = V(X) + V(Y) \]
- Chebyshev’s Inequality
- If X is a random variable on S with probability function p, then
 \[p(|X(s) - E(X)| \geq r) \leq V(X)/(r^2) \]
- Example:
 - Probability draw a card 3 or more from the mean of blackjack cards
 - $V(X)/r^2 \approx 8.5/9 \approx 0.94$
 - Actual is 2, 3, 4, $A = 4/13$
Section 16

Recurrence Relations
Definitions

- A **recurrence relation** is an equation that expresses a_n in terms of one of more of the previous terms.
- A sequence is a **solution** to a recurrence relation if its terms satisfy the equations.
- Examples:
 - Recurrence Relation: $a_n = a_{n-1} + 3, a_0 = 2$. Solution: [2, 5, 8, …]
 - Fibonacci: $a_n = a_{n-1} + a_{n-2}, a_0 = 1, a_1 = 1$. Solution: [0, 1, 1, 2, 3, 5, …]
- A **closed form solution** is an equation for each term that does not reference other terms.
Linear Homogeneous Recurrence Relation

Definition

A linear homogeneous recurrence relation of degree k with constant coefficients is a recurrence relation of the form:

$$a_n = c_1 a_{n-1} + c_2 a_{n-2} + \ldots + c_k a_{n-k}$$

such that every $c_i \in \mathbb{R}$ and $c_k \neq 0$.

Linear because each right-hand side term is sum of previous terms

Homogeneous because no terms occur that are not multiples of previous terms

Constant coefficients means no c_i can reference n (but note that 0 is allowed for all but last coefficient)

The degree is determined by the number of terms required
Examples

- $a_n = \frac{3a_{n-1}}{2}$ is l.h.r.r. of degree 1
- Fibonacci is l.h.r.r of degree 2
- $a_n = 2 \ast a_{n-5}$ is l.h.r.r of degree 5 (4 terms with 0 as coefficient)
- $a_n = a_{n-1} + 3$ is not l.h.r.r because 3 is not multiple of previous term
- $a_n = 2^n a_{n-1}$ is not l.h.r.r because 2^n is not constant coefficient
- $a_n = a_{n-1}^2$ is not l.h.r.r because squared term is not linear
Solving L.H.R.R. of degree 2

- Find closed form equation (of the form \(a_n = r^n \)).
- \(r^n = c_1 r^{n-1} + c_2 r^{n-2} + \ldots + c_k r^{n-k} \)
- \(r^k = c_1 r^{k-1} + c_2 r^{k-2} + \ldots + c_k \) – divide both sides by \(r^{n-k} \)
- \(r^k - c_1 r^{k-1} - c_2 r^{k-2} - \ldots - c_k = 0 \) – is the characteristic equation
- Solutions to the characteristic equation are the characteristic roots
- Assuming degree=2 and distinct roots \(r_0 \) and \(r_1 \), \(a_n = \alpha_1 r_0^n + \alpha_2 r_1^n \)
- Use initial terms to solve for \(\alpha_1 \) and \(\alpha_2 \)
Solving L.H.R.R.

- \(a_n = 5a_{n-1} - 6a_{n-2}, a_0 = 1, a_1 = 0 \)
- \(r^n = 5r^{n-1} - 6r^{n-2} \Rightarrow r^2 = 5r - 6 \Rightarrow r^2 - 5r + 6 = 0 \)
- Characteristic Roots are 3, 2
- \(a_n = \alpha_1 3^n + \alpha_2 2^n \)
- \(1 = \alpha_1 + \alpha_2 \Rightarrow 1 - \alpha_1 = \alpha_2 \)
- \(0 = \alpha_1 * 3 + \alpha_2 * 2 \Rightarrow 0 = \alpha_1 * 3 + (1 - \alpha_1) * 2 \Rightarrow \alpha_1 = -2 \Rightarrow \alpha_2 = 3 \).
- \(a_n = -2(3^n) + 3(2^n) \)
- Check: Sequence solution is \([1, 0, -6, -30, \ldots]\)
- \(a_3 = -2(3^3) + 3(2^3) = -54 + 24 = -30 \)
Solving L.H.R.R.

- **Fibonacci**: \(a_n = a_{n-1} + a_{n-2}, a_0 = 0, a_1 = 1 \)
- \(r^2 = 1r^1 + 1r^0 \)
- \(r^2 - r^1 - 1 = 0 \)
- **Quadratic Equation**: \(\frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \)
- \(a = 1, b = -1, c = -1, \frac{1+\sqrt{1+4}}{2}, \frac{1-\sqrt{1+4}}{2} \)
- \(a_n = \alpha_1 \left(\frac{1+\sqrt{5}}{2}\right)^n + \alpha_2 \left(\frac{1-\sqrt{5}}{2}\right)^n \)
- **Use** \(a_0 \) and \(a_1 \) **to determine values for alpha**
Solving L.H.R.R. continued

- \(0 = \alpha_1 \left(\frac{1+\sqrt{5}}{2} \right)^0 + \alpha_2 \left(\frac{1-\sqrt{5}}{2} \right)^0 = \alpha_1 + \alpha_2 \)

- Therefore, \(-\alpha_1 = \alpha_2\)

- \(1 = \alpha_1 \left(\frac{1+\sqrt{5}}{2} \right)^1 + \alpha_2 \left(\frac{1-\sqrt{5}}{2} \right)^1 \)

- Substituting: \(1 = \alpha_1 \left(\frac{1+\sqrt{5}}{2} \right)^1 - \alpha_1 \left(\frac{1-\sqrt{5}}{2} \right) \)

- \(1 = \alpha_1 \left(\frac{1+\sqrt{5}}{2} - \frac{1-\sqrt{5}}{2} \right) = \alpha_1 \frac{1+\sqrt{5}-1+\sqrt{5}}{2} = \alpha_1 \sqrt{5} \)

- \(\alpha_1 = \frac{1}{\sqrt{5}}, \alpha_2 = -\frac{1}{\sqrt{5}} \)

- \(a_n = \frac{1}{\sqrt{5}} \left(\frac{1+\sqrt{5}}{2} \right)^n + -\frac{1}{\sqrt{5}} \left(\frac{1-\sqrt{5}}{2} \right)^n \)

- Test cases:
 - \(\text{fib}(0) = 0. \frac{1}{\sqrt{5}} \left(\frac{1+\sqrt{5}}{2} \right)^0 + -\frac{1}{\sqrt{5}} \left(\frac{1-\sqrt{5}}{2} \right)^0 = \frac{1}{\sqrt{5}} - \frac{1}{\sqrt{5}} = 0 \)
 - \(\text{fib}(5)=5. \frac{1}{\sqrt{5}} \left(\frac{1+\sqrt{5}}{2} \right)^5 + -\frac{1}{\sqrt{5}} \left(\frac{1-\sqrt{5}}{2} \right)^5 \approx 4.96 - -0.04 = 5 \)
 - \(\text{fib}(18)=2584. \frac{1}{\sqrt{5}} \left(\frac{1+\sqrt{5}}{2} \right)^{18} + -\frac{1}{\sqrt{5}} \left(\frac{1-\sqrt{5}}{2} \right)^{18} \approx 2584.00007 - (7 \times 10^{-5} = 2584) \)
Let $r^2 - c_1 r^1 - c_2 r^0$ have only one real root x.

Closed form solution for $a_n = \alpha_1 x^n + \alpha_2 n \cdot x^n$

Example: $a_n = 4a_{n-1} - 4a_{n-2}$, $a_0 = 6$, $a_1 = 8$

- $r^2 = 4r - 4 \rightarrow r^2 - 4r + 4 = 0$
- $\frac{4\pm\sqrt{16-4\cdot1\cdot4}}{2} = \frac{4}{2} = 2$
- $a_n = \alpha_1 2^n + \alpha_2 n \cdot 2^n$
- $a_0 = \alpha_1 2^0 + \alpha_2 0 \cdot 2^0 \rightarrow 6 = \alpha_1$
- $a_1 = \alpha_1 2^1 + \alpha_2 1 \cdot 2^1 \rightarrow 8 = 6 \cdot 2 + \alpha_2 \cdot 2 \rightarrow -2 = \alpha_2$
- $a_n = 6(2^n) - 2n(2^n)$
- Check: $[6, 8, 8, 0, -32, \ldots]$
 $a_4 = 6 \cdot 16 - 8 \cdot 16 = 96 - 128 = -32$
Section 17

Inclusion-Exclusion
Inclusion and Exclusion

To be added Spring 2019
Section 18

Graphs
A graph $G = (V, E)$ where V is a set of vertices (or nodes) and $E \subseteq V \times V$ is a set of edges.

A graph can be directed
- first vertex in an edge is the source
- second vertex is the destination
- connectivity is from source to destination
- edges represented as arrows pointing at the destination
- example on board

A graph can be undirected
- both vertices are incident on edge
- connectivity is bidirectional
- edges represented as lines between vertices
- example on board

A graph is simple if E is a set and there are no self-loops.
Neighborhoods

- Vertex v_i is adjacent to v if there is an edge from v to v_i
- Vertex v_i is a neighbor of v if it is adjacent to v
- Set of neighbors of v are the *neighborhood* of v, denoted $N(v)$
- Directed graph definition: $N(v) = \{ v_i \in V \mid (v, v_i) \in E \}$
- Undirected graph definition: $N(v) = \{ v_i \in V \mid (v, v_i) \in E \lor (v_i, v) \in E \}$
- Neighborhood can apply to $A \subset V. N(A) = \bigcup_{v \in A} N(v)$.
- Example on board
Degree of a node

- The degree \(\text{deg}(v) \) of a node in an undirected graph is the number of times an edge connects to the node.

\[
\text{deg}(v) = |\{(v, v_i) | (v, v_i) \in E\}| + |\{(v_i, v) | (v_i, v) \in E\}|
\]

- Example on board
- **Handshake Theorem**: Let \(G = (V, E) \) be an undirected graph. \(2|E| = \sum_{v \in V} \text{deg}(v) \).

- Proof by induction
 - Basis: Let \(E = \emptyset \). Therefore, \(\forall v \in V, \text{deg}(v) = 0 \), so \(\sum_{v \in V} \text{deg}(v) = 0 = 2 \cdot |E| \)
 - Inductive Hypothesis: Let \(G = (V, E) \) be a graph with \(k \) edges. Therefore, \(2|E| = \sum_{v \in V} \text{deg}(v) \).
 - Let \(G' = (V', E') \) such that \(V' = V \) and \(E' = E \cup (v_i, v_j) \).
 - Case 1: \((v_i, v_j) \in E \). Therefore, \(E = E' \) and by the inductive hypothesis, the theorem holds.
 - Case 2: \((v_i, v_j) \notin E \). Therefore, \(|E'| = |E| + 1 \).
 - Note that, \(\text{deg}(v_i) \) and \(\text{deg}(v_j) \) both increase by one. Therefore, \(\sum_{v \in V'} \text{deg}(v) = \sum_{v \in V} \text{deg}(v) + 2 \)
 - Therefore, \(2|E'| = 2|E| + 2 = \sum_{v \in V} \text{deg}(v) + 2 = \sum_{v \in V'} \text{deg}(v) \).
Indegree and outdegree

- The *indegree* \((\text{deg}^- (v))\) of a node \(v\) in a directed graph is the number of edges with \(v\) as the destination.
- The *outdegree* \((\text{deg}^+ (v))\) of a node \(v\) in a directed graph is the number of edges with \(v\) as the source.
- Example on board

\[
\sum_{v \in V} \text{deg}^- (v) = \sum_{v \in V} \text{deg}^+ (v) = |E|
\]
Let $G = (V, E)$ be a simple graph. G is a complete graph iff \(\forall v_i, v_j \in V, v_j \in N(v_i) \).

Example on board.

Let $G = (V_1 \cup V_2, E)$ be a simple graph. G is a bipartite graph iff \(\forall (v_i, v_j) \in E, v_i \in V_1 \rightarrow v_j \in V_2 \land v_i \in V_2 \rightarrow v_j \in V_1 \)

Example on board.

Let $G = (V_1 \cup V_2, E)$ be a simple graph. G is a complete bipartite graph iff it is bipartite and every node in V_1 is connected to every node in V_2.
Matchings

- A matching of a bipartite graph $G = (V_1 \cup V_2, E)$ is a subgraph $G' = (V_1 \cup V_2, E' \subseteq E)$ such that $\forall v \in V_1 \cup V_2, \deg(v) \leq 1$.

- A maximum matching is a matching with the largest number of edges.

- A complete matching is a matching from V_1 to V_2 such that all nodes in V_1 are incident on an edge ($|E'| = |V_1|$).

- Hall’s Marriage Theorem: A bipartite graph $G = (V_1 \cup V_2, E)$ has a complete matching iff $\forall A \in 2^{V_1}, |N(A)| \geq |A|$.
Section 19

Relations, Matrices and Directed Graphs
Relations and Directed Graphs

- Let R be a relation over (A, A)
- A directed graph $G_R = (A, E)$ where $E \subseteq A \times A$ such that $(a_i, a_j) \in E \iff R(a_i, a_j)$ (not always simple graph).
- Example on board for $R = \{(1, 1), (1, 2), (2, 3), (3, 1)\}$
- Recall boolean matrix M_R where $M_R(a_i, a_j) = 1$ iff $(a_i, a_j) \in R$
- Therefore, $(a_i, a_j) \in E$ iff $M_R(a_i, a_j) = 1$
- Boolean product of $M_R \odot M_R$ indicates nodes two steps away (i.e., share common neighbor). Example on board for below.

\[
\begin{bmatrix}
1 & 1 & 0 \\
0 & 0 & 1 \\
1 & 0 & 0
\end{bmatrix} \odot \begin{bmatrix}
1 & 1 & 0 \\
0 & 0 & 1 \\
1 & 0 & 0
\end{bmatrix} = \begin{bmatrix}
1 & 1 & 1 \\
1 & 0 & 0 \\
1 & 1 & 0
\end{bmatrix}
\]
Paths and Boolean Products

- $M^n_{R}[i,j] = 1$ (Boolean product of M_R with itself n times) iff G_R contains a path of length n from a_i to a_j

- Proof (by induction):
 - WLOG, let $|A| = p$
 - Basis: By definition, G_R contains an edge from a_i to a_j exactly when $M_R[i,j] = 1$
 - Inductive Hypothesis: If $M^k_R[i,j] = 1$, there exists a path of length k from a_i to a_j in G_R.
 - Consider $M^{k+1}_R = M^k_R \odot M_R$. $M^{k+1}_R[i,j] = 1$ iff $\exists m, 1 \leq m \leq p$ such that $M^k_R[i,m] = 1$ and $M_R[m,j] = 1$.
 - By the IH, $M^k_R[i,m] = 1$ means there is a path of length k from a_i to a_m. Call this path P.
 - $M_R[m,j] = 1$ means there is an edge from a_m to a_j.
 - The path P' which follows P for k steps, then takes the edge from a_m to a_j is a path from a_i to a_j and is of length $k + 1$.

- The completion of the proof (showing if there is a path of length k in G_R then $M^k_R[i,j] = 1$) is in the homework.
Transitive Closures

Let \(|A| = n\).

\[\forall_{k=1}^{n} M_R^k \] is the transitive closure of \(R\).

Also called the connectivity relation \(R^*\).

Given a graph \(G = (A, E)\), we can define
\[R(a_i, a_j) \iff (a_i, a_j) \in E \] (e.g., derive relation from graph).

Note: If there is a path from \(a_i\) to \(a_j\) in \(G\), then the shortest path cannot be longer than \(|A|\).

Transitive closure is the set of all paths in \(G\)
An *equivalence relation* is a relation that is reflexive, symmetric and transitive.

If $R(A, A)$ is an equivalence relation, then $R(a_i, a_j)$ means $a_i \sim a_j$ (*a_i and a_j are equivalent*).

Let $R(A, A)$ be an equivalence relation. The *equivalence class* of $a_i \in A$, $[a_i]_R = \{a_j | R(a_i, a_j)\}$.

Note: $a_i \in [a_i]_R$, since R is reflexive.

Note: $\bigcup_{a \in A}[a]_R = A$

Note: $a_j \notin [a_i]_R \rightarrow [a_j]_R \cap [a_i]_R = \emptyset$

Note: $a_j \in [a_i]_R \rightarrow [a_j]_R = [a_i]_R$

The equivalence classes of R form a *partition* of A.
Partial Orders

- $R(A, A)$ is a *partial order* on A iff it is reflexive, antisymmetric, and transitive.
- (A, R) is a *partially ordered set* or a *poset*.
- Consider $R = \{(1, 1), (2, 2), (3, 3), (4, 4), (1, 2), (1, 3), (2, 4)\}$ (M_R is below).
- Arbitrary relation symbol is \preceq, so (A, \preceq) is a poset with arbitrary relation.

$$M_R = \begin{bmatrix}
1 & 1 & 0 & 1 \\
0 & 1 & 0 & 1 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
\end{bmatrix}$$
Poset Properties

- Not all elements are related – 2 and 3 from previous
- If \(a \preceq b \) holds, \(a \) and \(b \) are comparable.
- If all elements in \(A \) are comparable, \((S, \preceq)\) is a total ordering.
- \(\forall a_i \in A, a_j \npreceq a_i \rightarrow a_j \) is a maximal element (3 and 4 are maximal in example)
- \(\forall a_i \in A, a_i \npreceq a_j \rightarrow a_j \) is a minimal element (1 is minimal in example)
- Every poset has at least one minimal and one maximal element (can have more)
Section 20

Graphs, Paths and Circuits
Graph Isomorphism

- $G_1 = (V_1, E_1)$ is isomorphic to $G_2 = (V_2, E_2)$ iff there exists a bijective function $f : V_1 \rightarrow V_2$ such that $v_i \in N(v_j)$ in G_1 iff $f(v_i) \in N(f(v_j))$ in G_2.
- Example on board (isomorphic and not isomorphic)
- Properties which must hold under isomorphism
 - Number of vertices
 - Number of edges
 - Number of vertices with same degree
- M_G is adjacency matrix of G
- Rearrange rows and columns of M_{G_1} until $M_{G_1} = M_{G_2}$, then G_1 is isomorphic to G_2
- Example on board
Paths

- A path in a simple graph G is a sequence $P = [x_0, x_1, \ldots, x_{n-1}]$ of vertices such that $x_{i+1} \in N(x_i)$.
- A circuit is a path such that $x_0 = x_{n-1}$.
- The length of P is $n - 1$.
- Example on board (undirected and directed)
- A graph is connected if there is a path (in both directions) between every pair of distinct vertices.
- A connected component of G is a subgraph G' such that G' is connected and there does not exist a connected subgraph G'' of G such that G' is a proper subgraph of G''.
- An articulation point is a vertex $v \in V$ such that the removal of v would make G no longer connected.
- A bridge is an edge $(v_i, v_j) \in E$ such that the removal of (v_i, v_j) would make G no longer connected.
- Example on board.
- Paths are preserved under isomorphism. Therefore, if G_1 has a circuit of length k and G_2 does not, then G_1 and G_2 are not isomorphic.
Euler Circuits and Paths

- A multigraph G contains multiple edges from two vertices (i.e., E is not a set)
- A Euler circuit in G is a simple circuit containing every edge in G
- A Euler path in G is a simple path containing every edge in G
- Example on board
- Conditions for Euler circuits:
 - G must be connected
 - Every vertex must have even degree
- Conditions for Euler path, but NOT Euler circuit
 - G must be connected
 - Exactly two vertices with odd degree
- Excellent proofs in text
Hamilton Circuits and Paths

- A Hamilton circuit in G is a simple circuit containing every vertex in G
- A Hamilton path in G is a simple path containing every vertex in G
- Example on board
- No known simple criteria for Hamilton circuits or paths (necessary and sufficient)
- Sufficient criteria for circuit in simple, undirected graph $G = (V, E)$
 - G is connected
 - $|V| \geq 3 \land \forall v \in V, \deg(v) \geq n/2$ (Dirac’s Theorem)
 - $|V| \geq 3 \land \forall u, v \in V, u \notin N(v) \rightarrow \deg(u) + \deg(v) \geq n$ (Ore’s Theorem)
Section 21

Shortest Path and Trees
Shortest Path

- A weighted graph $G^+(V, E)$ where E is a set of 3-tuples (v_i, v_j, w) such that w is the weight of the edge (v_i, v_j)
- Can be directed or undirected
- The matrix representation of G^+ uses weights as values (assuming simple graph with all weights positive)
- Example on board using matrix below
- The shortest path has the least sum of weights
- Example on board from 1 to 5

$$M = \begin{bmatrix} 0 & 10 & 0 & 20 & 0 \\ 12 & 12 & 12 & 12 & 12 \\ 0 & 0 & 0 & 0 & 0 \\ 20 & 12 & 0 & 0 & 10 \\ 0 & 12 & 5 & 10 & 0 \end{bmatrix}$$
Dijkstra’s Algorithm

- **Inputs:** G^+, $v_i, v_j \in V$
- **Output:** Shortest path from v_i to v_j in G^+
- **Keep list of shortest known paths from v_i to all $v \in V$**
- **Initialize list so that all nodes have unknown path (P) with infinite length (L)**
- **Set $P(v_i)$ to $[v_i]$ and $L(v_i) = 0$**
- **While v_j is unmarked**
 - Let v be the vertex with the shortest path so far (choose randomly for ties)
 - Mark v
 - For all unmarked $v_k \in N(v)$
 - Let w be from the edge (v, v_k, w)
 - If $L(v) + w < L(v_k)$, then set $P(v_k) = P(v).v$ and $L(v_k) = L(v) + w$
- **Example on board**
A directed acyclic graph (DAG) is a directed graph \(G = (V, E) \) such that in the transitive closure of \(G \), \(G^*_R = (V, E^*_R), \forall v \in V, v \notin N(v) \).

Example on board

\[
G = (\{0, 1, 2, 3\}, \{(0, 1), (1, 2), (0, 2), (3, 0)\})
\]

The relation corresponding to a DAG \(G \) is not reflexive but it is antisymmetric. It may or may not be transitive.
Trees

- A *tree* is an undirected graph with no simple cycles.
- A *rooted tree* is a DAG such that:
 - The undirected form of the graph is a tree.
 - A root is a node with no incoming edges.
 - All edges are directed away from the root.
- Any edge in tree can be selected as root (different roots yield different trees).
- A *leaf* is a node with no outgoing edges.
- The *branching factor* of a tree is the maximum number of children for each node.
- If m is the branching factor, than the tree is *m-ary*. If $m = 2$, the tree is binary.
Tree Properties

- A tree with n vertices has $n-1$ edges.
- Inductive Proof (from text):
 - Basis: $n=1$. One node. No edges.
 - Inductive Hypothesis: Every tree with k vertices has $k-1$ edges
 - Let T be a tree with $k+1$ nodes. Let v be a leaf in T.
 - Removing v from T generates a tree T' with k nodes (T' has no simple circuits)
 - Therefore, T' has $k-1$ edges.
 - There can be only one edge from any node in T' to v, otherwise a cycle would exist (can you prove why?)
- The level of a node is the length of the path from the root to the node
- The height of a tree is the maximum level of any node
- A tree of height h is balanced if all leaves are at level h or $h-1$
- There are at most m^h leaves in an m-ary tree of height h
Section 22

Tree Traversals and Heaps
Sparse Graphs

- Consider complete binary tree T of height k
- T has 2^k leaf nodes, $2^k - 1$ non-leaf nodes and $2^{k+1} - 1$ nodes total.
- Matrix representation $2^{k+1} - 1 \times 2^{k+1} - 1$ with $2^{2k+2} - 2^{k+2} + 1$ entries
- Each non-leaf node has 2 neighbors. All leaves have zero neighbors.
- Matrix has $2^{k+1} - 2$ non-zero values and $2^{2k+2} - 3(2^{k+1}) + 3$ zeros.
- Examples:
 - $k = 3$. Matrix has 225 entries. 14 are one. 211 are zero.
 - $k = 10$. Matrix has 4,190,290 entries. 4,188,163 are zero.
Alternative Representations

- **Adjacency List**
 - Array of values for each node \((size 2^k)\).
 - Root is index location 0
 - Each entry is array with list of neighbors – “in order” if applicable
 - Weights become array of ordered pairs (neighbor, weight)

- **Tree Data Structure**
 - **Node Object**
 - Value with node references (pointers) \((size 2^k)\)
 - References stored “in order” (if applicable)
 - Weights stored with references (ordered pair object)
 - Parent reference can be stored in object
 - Root object stored in known location (usually variable called “root”)
 - Leaf and non-leaf can be subclasses
Tree Traversals

- Recursive procedure for processing nodes
- Preorder traversal
 - Visit node first
 - Visit children in order
 - Return
- Add motivations
- Inorder traversal (more common in binary trees)
 - Visit first child
 - Visit node
 - Visit remaining children in order
 - Return
- Add motivations
- Postorder traversal
 - Visit children in order
 - Visit node
 - Return
- Add motivations
Depth First Search

- Values can be complex.
- Example: Game of tic-tac-toe (below)
- Spanning tree of graph (tree containing all nodes of graph)
- Algorithm
 - Visit children in order
 - Visit node
 - Return
- Example on board

```
O
X O X
X
```
Breadth First Search

- Same applications
- Algorithm
 - Place root in queue
 - While queue not empty
 - Pop node N from queue
 - Visit N
 - Append children of N to queue
- Example on board

```
O
X O X
X
```
Heap

- Tree structure (often binary)
- Parent always greater than or equal to children (max heap)
- Insertion:
 - Add new value to first available leaf
 - if child greater than parent, swap (continue until swap root)
- Example: 10,5,15,8,12,20,2
- Pop: (remove top element)
 - Move greater child into empty slot
 - continue until leaf moved
- Different insertion order can yield different heaps
- Example: 2,5,8,10,12,15,20
Section 23

Boolean Algebra
Boolean Algebra

- To be completed Spring 2019.
Section 24

Old Notes
Everything After this is Excluded Material
Section 25

Relations
Definitions of Relations

- A *relation* between sets A and B is a subset of $A \times B$
- Typically, a relation defines a connection between elements of the set
- Example 1: $A = \{\text{students in class}\}$, $B = \{\text{side of room}\}$, $R(a, b) \leftrightarrow a$ sits on b side of the room. (on board)
- Example 2: $A = \{\text{volunteers}\}$, $B = \{\text{food}\}$, $R(a, b) \rightarrow a$ likes b. (on board)
- Functions are relations restricted such that elements from A appear only once (Example 1)
- Graphs can show relations
- Relations can be on one set $A = \{\text{food}\}$, $B = \{\text{food}\}$, $R(a, b) \leftrightarrow a$ is the same color as b (on board). Usually written as $R(a, a)$
Properties of Relations

- Consider relations on $\mathbb{Z} \times \mathbb{Z}$
 - **Reflexive**: $\forall a \in A, R(a, a)$
 - $R(z_0, z_1) \leftrightarrow z_0 \leq z_1$ is reflexive
 - $R(z_0, z_1) \leftrightarrow z_0 < z_1$ is NOT reflexive
 - **Symmetric**: $\forall a \in A, \forall b \in B, R(a, b) \rightarrow R(b, a)$
 - $R(z_0, z_1) \leftrightarrow z_0 \leq z_1$ is NOT symmetric
 - $R(z_0, z_1) \leftrightarrow z_0 = z_1$ is symmetric (and reflexive)
 - $R(z_0, z_1) \leftrightarrow z_0$ and z_1 are relatively prime is symmetric (and not reflexive)
 - **Antisymmetric** (poorly named): $\forall a \in A, \forall b \in B, R(a, b) \land R(b, a) \rightarrow a = b$
 - $R(z_0, z_1) \leftrightarrow z_0 \leq z_1$ is antisymmetric
 - $R(z_0, z_1) \leftrightarrow z_0 = z_1$ is antisymmetric
 - $R(z_0, z_1) \leftrightarrow z_0$ and z_1 are relatively prime is NOT antisymmetric
Properties of Relations

- **Transitive**: $R(a, b) \land R(b, c) \rightarrow R(a, c)$
 - $R(z_0, z_1) \iff z_0 \leq z_1$ is transitive
 - $R(z_0, z_1) \iff z_0 = z_1$ is transitive
 - $R(z_0, z_1) \iff z_0$ and z_1 are relatively prime is NOT transitive
Sets and Relations

- Relations are sets of ordered pairs. Therefore, all set operations apply.

\[R(z_0, z_1) \iff z_0 \leq z_1 \quad R(z_0, z_1) \iff z_0 < z_1 \quad R(z_0, z_1) \iff z_0 = z_1 \]

- Proof:
 - Let \(LEQ = R(z_0, z_1) \iff z_0 \leq z_1 \), \(LT = R(z_0, z_1) \iff z_0 < z_1 \) and \(EQ = R(z_0, z_1) \iff z_0 = z_1 \).
 - Let \((a, b) \in LEQ - LT \). Therefore, \((a, b) \in LEQ \) and \((a, b) \notin LT \).
 - Therefore, \(a \leq b \) and \(a \geq b \) (not less than).
 - Therefore, \(a = b \) and \(EQ(a, b) \). Reverse direction is similar.

- Let \(A = \{1, 2, 3\} \). Let \(R(a, a) = \{(1, 1), (2, 2), (1, 2)\} \) and \(S(a, a) = \{(1, 1), (2, 2), (2, 1)\} \).

 - \(R \cup S = \{(1, 1), (2, 2), (1, 2), (2, 1)\} \)
 - \(R \cap S = \{(1, 1), (2, 2)\} \)
 - \(R \oplus S = \{(1, 2), (2, 1)\} \)
N-ary Relations

- Text is awkward with notation
- Extend notion to n-wise cross product.
- Given sets $S_0, S_1, \ldots S_{n-1}$, $R \subseteq S_0 \times S_1 \times \ldots \times S_{n-1}$
- $r \in R$ is a n-tuple. Note that the ordering is important.
- Relational databases (Oracle, MySQL, SQLServer, etc.) use tables as relations with attributes representing sets
- Example: Students(Id, Name, Major, Favorite Number)
- Collection of attributes is the schema
- Note: Databases allow duplicate elements – database tables are bags of n-tuples
- Id is primary key uniquely identifies row in table
Basic Relational Algebra

Let \(R(A, B, C) = \{(1, 2, 3), (2, 3, 4)\} \) and \(S(C, D, E) = \{(3, 4, 5), (3, 2, 1)\} \)

\(\sigma_P R \) (selection) creates new table with same schema as \(R \). A row is in \(\sum_P R \) if it is in \(R \) and it satisfies predicate \(P \)

\(\sigma_{A=1} R = \{(1, 2, 3)\} \)

\(\Pi_{A, B} R \) (projection) creates new table with columns \(A \) and \(B \). There is a 1-1 mapping from each row in \(R \) to each row in \(\Pi_{A, B} R \)

\(\Pi_{B, C} R = \{(2, 3), (3, 4)\} \)

\(R \bowtie S \) (natural join) creates new table with union of columns in \(R \) and in \(S \). A row is in \(R \bowtie S \) if \(\exists r \in R \land s \in S \) such that \(r[R \cap S] = s[R \cap S] \).

\(R \bowtie S = \{(1, 2, 3, 4, 5), (1, 2, 3, 2, 1)\} \)

Note: Results of relational algebra operators are relations. Operations can be composed.

\(\Pi_{A,E}(\sigma_{B=D}(R \bowtie S)) = \{(1, 1)\} \)
Queries

- Example queries using relational algebra
- To be added Spring 2019
Section 26

Relations, Matrices and Digraphs
Matrix representation of $R(a, a)$ (can be any relation – see text)

- $M_R[i, j] = 1 \iff R(i, J)$. Otherwise, $M_R[i, j] = 0$.

- Matrix M_R is the representation of
 $R = \{(1, 1), (1, 2)(2, 1), (3, 3)\}$

- Matrix M_S is the representation of
 $S = \{(2, 2), (2, 3), (3, 2), (3, 3)\}$

- Matrix diagonal all 1’s implies relation is reflexive

- $M = M^t$ implies relation is symmetric

\[
M_R = \begin{bmatrix}
1 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 1 \\
\end{bmatrix}
\]

\[
M_S = \begin{bmatrix}
0 & 0 & 0 \\
0 & 1 & 1 \\
0 & 1 & 1 \\
\end{bmatrix}
\]
Matirx Operations and Relational Operations

- $A \lor B$ is the *join* of matrices A and B – logical OR of corresponding elements
- $A \land B$ is the *meet* of matrices A and B – logical AND of corresponding elements
- $A \odot B$ is the *Boolean product* of matrices A and B –
 $C = A \odot B \rightarrow c_{ij} = (a_{i1} \land b_{1j}) \lor (a_{i2} \land b_{2j}) \lor \ldots \lor (a_{in} \land b_{nj})$ – see below (note similarity to matrix multiplication)
- $M_R \lor M_S = R \cup S$
- $M_S \land M_S = R \cap S$
- Boolean product is composition of relations
- $M_R \odot M_R = M_R \rightarrow R$ is transitive (but not “iff”)

\[
\begin{bmatrix}
1 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 1
\end{bmatrix} \odot
\begin{bmatrix}
0 & 0 & 0 \\
0 & 1 & 1 \\
0 & 1 & 1
\end{bmatrix} =
\begin{bmatrix}
0 & 1 & 1 \\
0 & 0 & 0 \\
0 & 1 & 1
\end{bmatrix}
\]