CSI 2350 Discrete Mathematics

Dr. Greg Speegle

Fall 2018
Section 1

Binary, Octal and Hex
Overview

» Needs to be added for Spring 2019
Section 2

Propositional Logic
Propositional Logic

- Needs to be added for Spring 2019
Section 3

Knights and Knave
Knights and Knaves

- Needs to be added for Spring 2019
Section 4

CNF, DNF and Proofs
CNF, DNF and Proofs

- Needs to be added for Spring 2019
Section 5

Set Theory
Sets

- Needs to be added for Spring 2019
Section 6

Functions and Sequences
Functions and Sequences

- Needs to be added for Spring 2019
Section 7

Summations and Matrices
Summations

- Add the terms in a sequence
- Uses Σ
- Examples:
 - $\sum_{j=1}^{n} j = \frac{n(n + 1)}{2}$
 - $\sum_{j=1}^{n} j^2 = \frac{n(n + 1)(2n + 1)}{6}$
 - $\sum_{j=1}^{n} 2j + 3 = 2\sum_{j=1}^{n} j + \sum_{j=1}^{n} 3 = 2\cdot\frac{n(n + 1)}{2} + 3n = n^2 + 4n$
 - $\sum_{j=0}^{n} ar^j = \frac{ar^{n+1} - a}{r - 1}[r \neq 1], (n + 1)a[r = 1]$
 - Let $S = \{1, 2, 4, 8\}$ then $\sum_{x \in S} x = 1 + 2 + 4 + 8 = 15$
Double Summations

- Summation over two variables
- Inner and outer loop
- Examples:
 - $\sum_{i=1}^{4} \sum_{j=1}^{3} i \times j = 1 + 2 + 3 + 2 + 4 + 6 + 3 + 6 + 9 + 4 + 8 + 12 = 60$
 - $\sum_{i=1}^{4} \sum_{j=1}^{3} i \times j = \sum_{i=1}^{4} (i + 2i + 3i) = \sum_{i=1}^{4} 6i = 6 \times \sum_{i=1}^{4} i = 6 \times 10 = 60$
Countable and Uncountable Sets

- Sets A and B have the same cardinality iff there is a 1-1 correspondence (1-1 and onto function) from A to B
- Finite sets are countable
- Infinite sets with 1-1 correspondence to integers are countable
- Set of real numbers is uncountable
- Fun fact: Some problems cannot be solved by a computer. Halting problem (does program P halt?).
Matrices

- Express relationships between elements of sets
- Example - Powers of numbers (Matrix M)

\[M = \begin{bmatrix}
1 & 1 & 1 & 1 \\
2 & 1 & 2 & 4 \\
3 & 1 & 3 & 9 \\
\end{bmatrix} \]

- \(m \) rows and \(n \) cols is \(m \times n \) matrix (\(M \) is 3x4).
- \(m=n \) is square matrix
- Element \(a_{i,j} \) where \(i \) is row number and \(j \) is column number
- \(M_{2,2} = 1, M_{3,3} = 3 \)
Addition

- Requires M, N be same size
- $M + N = L \rightarrow \forall i, j L_{i,j} = M_{i,j} + N_{i,j}$

\[
\begin{bmatrix}
1 & 1 & 1 & 1 \\
2 & 1 & 2 & 4 \\
3 & 1 & 3 & 9
\end{bmatrix}
+
\begin{bmatrix}
1 & 2 & 3 & 4 \\
5 & 6 & 7 & 8 \\
9 & 10 & 11 & 12
\end{bmatrix}
=
\begin{bmatrix}
2 & 3 & 4 & 5 \\
7 & 7 & 9 & 12 \\
12 & 11 & 14 & 21
\end{bmatrix}
\]
Multiplication

- Columns in M must equal rows in N
- M is $m \times k$, N is $k \times n$, L is $m \times N$
- $L_{i,j} = \sum_{h=1}^{k} M_{i,h} \times N_{h,j}$

\[
\begin{bmatrix}
1 & 1 & 1 & 1 \\
2 & 1 & 2 & 4 \\
3 & 1 & 3 & 9
\end{bmatrix}
\times
\begin{bmatrix}
1 & 2 \\
5 & 6 \\
9 & 10 \\
11 & 12
\end{bmatrix}
=
\begin{bmatrix}
26 & 30 \\
69 & 78 \\
134 & 150
\end{bmatrix}
\]

- Example:
 \[L_{2,2} = \sum_{h=1}^{4} M_{2,h} \times N_{h,2} = 2 \times 2 + 1 \times 6 + 2 \times 10 + 4 \times 12 = 78\]
- Example:
 \[L_{1,2} = \sum_{h=1}^{4} M_{1,h} \times N_{h,2} = 1 \times 2 + 1 \times 6 + 1 \times 10 + 1 \times 12 = 30\]
- NOT commutative (e.g., $M \times N \neq N \times M$, see above)
Identity Matrix and Transposition

- **Identity matrix** (usually I)
 - Square
 - Diagonal values are 1; all other values are 0
 - $M \times I = M$

- **Transpose of $M = M^t$**
 - $M^t_{i,j} = M_{j,i}$
 - M is symmetric if $M = M^t$ (note: must be square)

\[
M = \begin{bmatrix}
1 & 1 & 1 & 1 \\
2 & 1 & 2 & 4 \\
3 & 1 & 3 & 9 \\
\end{bmatrix} \quad \rightarrow \quad M^t = \begin{bmatrix}
1 & 2 & 3 \\
1 & 1 & 1 \\
1 & 2 & 3 \\
1 & 4 & 9 \\
\end{bmatrix}
\]
Section 8

The Big $\Omega\Theta$ Fraternity
Binary Search

- Input list of elements \([a_1, a_2, \ldots, a_n]\), search key \(x\)
- Output index of element matching \(x\), or 0 if not found
- Pseudocode
 - \(i \leftarrow 1\)
 - \(j \leftarrow n\)
 - while \((i < j)\)
 - \(m \leftarrow \lfloor (i + j)/2 \rfloor\)
 - if \(x > a_m\) then \(i \leftarrow m + 1\)
 - else \(j \leftarrow m\)
 - if \(x = a_i\) then return \(i\)
 - else return 0
Binary Search Runtime

- Assume \(n = 2^k \) elements in list
- After iteration, remaining list half of previous list size
- After \(k \) iterations, list is size 1
- \(\log(n) = k \)
- Worst case running time is \(\log(n) \)
Let f and g be functions. $f(x)$ is $O(g(x))$ if $\exists C, k$ such that $f(x) \leq C * g(x)$ for all $n > k$. Assume $x \geq 0$.

Function f grows slower than function g for $n > k$.

NOTE: Can say ”is” or \in but $=$ is misleading (although used frequently).

NOTE: Existence proof. Find one C and one k (many may exist).

Technique: Start with known ($x > k$). Remember, we can select k.

Apply formulas to generate $C * g(x) \geq f(x)$.

Examples:

- $f(x) = 17x + 11 \in O(g(x) = x^2)$. Let $C = 2, k = 17$.
 - $x \geq 17 \rightarrow x^2 \geq 17x$
 - $\rightarrow x^2 + x^2 \geq 17x + 11$
 - $\rightarrow 2 * x^2 \geq 17x + 11$
Big O

- Examples:
 - $f(x) = x \log(x) \in O(g(x) = x^2)$. Let $C = 1$, $k = 1$
 - $x \geq 1 \rightarrow x \geq \log(x) \rightarrow x^2 \geq x \log(x)$
 - $f(x) = x^2 + x + 1 \in O(g(x) = x^2)$ Let $C = 3$, $k = 1$
 - $x \geq 1 \rightarrow x^2 \geq x \rightarrow x^2 + x^2 \geq x^2 + x$
 - $\rightarrow x^2 + x^2 + x^2 \geq x^2 + x + 1 \rightarrow 3 \cdot x^2 \geq x^2 + x + 1$

- To show $f(x)$ is not $O(g(x))$ must show no such C and k can exist.

- Example:
 - $f(x) = x^2$ is not $O(g(x) = x)$.
 - Assume not. Therefore $\exists C, k$ such that $f(x) \leq C \cdot g(x) \forall x > k$
 - Therefore, $x^2 \leq C \cdot x \forall x \geq k$
 - Therefore, $x \leq C \forall x \geq k$, which is a contradiction.
Big Ω

- Let f and g be functions. $f(x)$ is $\Omega(g(x))$ if $\exists C, k$ such that $f(x) \geq C \times g(x)$ for all $n > k$. Assume $x \geq 0$.
- Function f grows faster than function g for $n > k$.
- $f(x)$ in $\Omega(g(x)) \iff g(x) \in O(f(x))$.
- Example:
 - $f(x) = x^2$ is $\Omega(g(x) = x)$ because $g(x) = x$ is $O(f(x) = x^2)$.
 - $f(x) = x^4/2$ is $\Omega(g(x) = x^2)$. Show $g(x) = x^2$ is $O(f(x) = x^4/2)$.
 - Let $C = 1, k = 2$.
 - $x \geq 2 \rightarrow x^2 \geq 2x \rightarrow x^3 \geq 2x^2 \rightarrow x^4 \geq 2x^2 \rightarrow x^4/2 \geq x^2$.
Let \(f \) and \(g \) be functions. if \(f(x) \) is \(\Omega(g(x)) \) and \(f(x) \) is \(O(g(x)) \), then \(f(x) \) is \(\Theta(g(x)) \).

Equivalent: \(f(x) \) is \(O(g(x)) \) and \(g(x) \) is \(O(f(x)) \).

\(f(x) \) is bounded above and below by \(g(x) \).

Example:

\[
f(x) = x^2 + x + 1 \quad \text{is} \quad \Theta(g(x) = x^2)
\]

Show \(f(x) \) is \(O(g(x)) \), previous slide.

Show \(g(x) \) is \(O(f(x)) \). Let \(C = 1, k = 1 \).

\[
x \geq 1 \rightarrow x^2 + x \geq x^2 \rightarrow x^2 + x + 1 \geq x^2.
\]
Intractable Problems

- Show $f(x) = x^2$ is $O(g(x) = 2^x)$ Let $C = 1, k = 4$
- $x \geq 4 \rightarrow x \geq 2 \log(x) \rightarrow x \geq \log(x^2) \rightarrow \log(2^x) \geq \log(x^2) \rightarrow 2^x \geq x^2$
- Show $g(x) = 2^x$ is NOT $O(f(x) = x^2)$. Assume not.
- $\exists C, k$ such that $Cx^2 \geq 2^x, \forall x \geq k$.
- Therefore, $\log(Cx^2) \geq \log(2^x), \forall x \geq k$
- Let $a = \log(C)$. Therefore, $a + 2 \log(x) \geq x, \forall x \geq k$
- Note that $\forall a \exists x$ s.t. $x > a + 2 \log(x)$. Consider $\max(x = 2^a, 16)$. Then $2^a > 3a$, which is true for $a \geq 4$.
- Therefore, problems requiring exponential time are “harder” than quadratic problems (or any polynomial)
- Such problems are called **intractable**
P=NP?

- P - class of problems solvable in polynomial time
- NP - class of problems best solutions require exponential time
- Unknown if NP problems can be solved in polynomial time
- One of grand challenges of mathematics for 21st century (Millennium Problems)
- Example: Satisfiability
 - Predicate P in CNF $(p \lor q \lor r) \land (\neg p \lor s \lor \neg t) \ldots$
 - Can assign truth values to variables such that P can be satisfied?
 - DNF is trivial $(p \land q \land r) \lor (\neg p \land s \land \neg t) \ldots$
Section 9

Induction
Induction

- Proof technique for showing infinite series is true
- Require incremental progress
- Basis – Initial step (usually very easy to show)
- Induction Hypothesis (IH) – Theorem is true for k elements
- NOTE! Have not proved it is true. Just assuming it is.
- Show Theorem is true for $k + 1$ elements
- Therefore, initially true. Basis is now IH for next step. Now have IH for following step, etc.
Induction Example

- Summations “easily” shown by induction (proof simple; algebra can be tricky)
- Prove $\sum_{i=1}^{n} i^3 = (n(n + 1)/2)^2$
- Basis: $P(1). 1^3 = 1 = (1(2)/2)^2$
- IH: $\sum_{i=1}^{k} i^3 = (k(k + 1)/2)^2$
- Let $n = k + 1$.
- $\sum_{i=1}^{k+1} i^3 = \sum_{i=1}^{k} i^3 + (k + 1)^3$
- By IH, $\sum_{i=1}^{k+1} i^3 = (k(k + 1)/2)^2 + (k + 1)^3$
- $= ((k^2 + k)/2)^2 + k^3 + 3k^2 + 3k + 1$
- $= (k^4 + 2k^3 + k^2)/4 + k^3 + 3k^2 + 3k + 1$
- $= (k^4 + 2k^3 + k^2 + 4k^3 + 12k^2 + 12k + 4)/4$
- $= (k^4 + 6k^3 + 13k^2 + 12K + 4)/4$
- Note that $((k + 1)(k + 2)/2)^2 = ((k^2 + 3k + 2)/2)^2 = (k^4 + 3k^3 + 2k^2 + 3k^3 + 9k^2 + 6k + 2k^2 + 6k + 4)/4$
- $= (k^4 + 6k^3 + 13k^2 + 12k + 4)/4$
- So $\sum_{i=1}^{k+1} i^3 = ((k + 1)(k + 2)/2)^2$
Induction Example

- Prove \(x \geq 4 \rightarrow x \geq 2 \log(x) \)
- Basis: P(4). \(4 \geq 2 \log(4) = 4 \)
- IH: \(x = k \rightarrow x \geq 2 \log(x) \)
- Let \(x = k + 1 \).
- By IH, \(x \geq 2 \log(k) + 1 \)
- \(x \geq \log(k^2) + \log(2) \)
- \(x \geq \log(2k^2) \)
- \(x > \log(k^2 + 2k + 1) \)
- \(x > \log((k + 1)^2) = 2 \log(k + 1) = 2 \log(x) \)
Tag! You’re Out!

Need four volunteers.
Odd Man Pie Fights (from text)
- People stand in yard at distinct distances
- Throw pie at nearest neighbor
- Odd number of participants ensures at least 1 person is not hit

Technique - Induct over n for $P(2n + 1)$

Basis: $n = 1, P(3)$. Let (a, b) be closest pair. Then a hits b and b hits a. c hits whoever is closest to c, but nobody hits c
Odd Man Out Proof (cont’d)

- IH: Assume theorem is true for \(n = k, P(2 \times k + 1) \).
- Let \(n = k + 1 \). Therefore, want to show \(P(2 \times (k + 1) + 1) \) or \(P(2 \times k + 3) \).
- Let \((a, b)\) be the closest pair (all distances unique implies least element exists).
- Therefore, \(a \) hits \(b \) and \(b \) hits \(a \).
- Case I:
 - Someone else throws a pie at \(a \) or \(b \)
 - Therefore, at least 3 pies thrown at \(a \) and \(b \), leaving at most \(2k \) pies for \(2k + 1 \) people.
- Case II:
 - Nobody throws a pie at \(a \) or \(b \)
 - Now \(2 \times (k + 1) \) people remain with pies.
 - By IH, at least one is not hit.
Induction Example

- Number of elements in 2^S (from text)
- Show $|2^S| = 2^{|S|}$
- Basis: \emptyset. The only subset of \emptyset is itself. $|2^S| = 1 = 2^0$
- IH: $|S| = k \rightarrow |2^S| = 2^k$
- Let $|T| = k + 1$. $T = S \cup \{a\}$ such that $S = T - \{a\}$.
- Let $X \subseteq S$. Therefore, $X \subseteq T$ and $X \cup \{a\} \subseteq T$.
- By IH. there are 2^k such subsets of S, and $2 \times 2^k = 2^{k+1}$ subsets of T.
Section 10

Complete Induction & Recursion
Strong (Complete) Induction

- IH is not just that $P(k)$ is true, but $P(1) \land P(2) \land P(3) \ldots P(k)$ is true
- Equivalent to Induction, but sometimes easier to use
- Example: Prove that every positive integer n can written as a sum of distinct powers of 2
 - Basis: $n = 1$. $2^0 = 1 = n$
 - IH: $\forall n \leq k$, n can be written as a sum of distinct powers of 2
 - Let $n = k + 1$
 - Case I:
 - Let n be odd.
 - Since n is odd, k must be even.
 - By IH, let S be representation of the sum for k
 - Therefore, 2^0 cannot be in S
 - Therefore $n = (\text{representation for } k) + 2^0$.
Proof Continued

- Case II
 - Let n be even.
 - Therefore, $n/2$ is an integer such that $n/2 \leq k$.
 - By IH, let S be representation of the sum for $n/2$
 - Multiplying S by 2 increases each exponent by 1.
 - Therefore, S with each exponent increased by 1 is n
Function Recursion

- Compute values of a function based on previous values in the function
- Specify the value at 0 (or first k values)
- Provide rule for $f(n)$ based on lower values of n
- Factorial: $f(0) = 1. \forall n, n > 0 \rightarrow f(n) = n \cdot f(n - 1)$.
- Fibonacci:
 $f(0) = 0, f(1) = 1. \forall n, n > 1 \rightarrow f(n) = f(n - 1) + f(n - 2)$
- Paradox:
 $f(0) = 0.5. \forall n, n > 1 \rightarrow f(n) = (1 - f(n - 1))/2 + f(n - 1)$
- Min: $f(1) = a_1. \forall n, n > 1 \rightarrow f(n) = \min(a_n, f(n - 1))$
Set Recursion

- Compute elements in a set based on previous elements in the set
- Provide rule for initial elements. Provide rule for adding new elements.
- Initial - \(1 \in S\). Step - \(s, t \in S \rightarrow s + t \in S\) Prove \(S = \mathbb{Z}^+\) (Note! \(s\) and \(t\) do not have to be unique!):
 - Clearly, \(S \subseteq \mathbb{Z}^+\)
 - Basis: \(1 \in S\) by definition of \(S\)
 - IH: \(k \in S\).
 - Since \(k\) and \(1\) are in \(S\), by rule, \(k + 1 \in S\)
- Transitive Closure: Let \(V = \{v_0 \ldots v_{n-1}\}\) and \(E \subset V \times V\). Initial - \((v_i, v_j) \in E \rightarrow (v_i, v_j) \in S\). Step - \((v_i, v_j), (v_j, v_k) \in S \rightarrow (v_i, v_k) \in S\)
- DAG on the board
Recursive Algorithm

- Compute results using previously computed results
- Provide rule for terminal case. Provide rule for recursive call.
- Example: factorial
 - fact(n)
 - if $n \leq 0$ return 1
 - else return $n \times \text{fact}(n - 1)$
- Example: gcd
 - gcd(a,b)
 - if a=0 return b
 - return gcd(b%a,a)
Recursive Algorithm

- Example: fibonacci (Problem?)
 - fib(a)
 - if a=0 return 0
 - if a=1 return 1
 - return fib(a-1)+fib(a-2)

- Example: Binary Search (Problem?)
 - Let $A = [a_1, a_2, \ldots, a_n]$
 - find(A, x, i, j)
 - if $i \geq j$, then
 - if $a_i = x$ return i
 - else return 0
 - $m \leftarrow \lfloor (i + j)/2 \rfloor$
 - if $x > a_m$, then return find(A, x, $m + 1$, j)
 - else return find(A, x, i, m)
Loop Invariants

- Only part of Chapter 5 we’ll cover
- Proposition true for every iteration of loop
- Example:
 - Loop invariant: \(f = i! \)
 - \(i \leftarrow 1 \)
 - \(f \leftarrow 1 \)
 - while \((i < n)\)
 - \(i \leftarrow i + 1 \)
 - \(f \leftarrow f \times i \)
- At end of loop, loop invariant and \(\neg(i < n) \rightarrow f = n! \)
Section 11

Basic Counting
Overview

- Needs to be added for Spring 2019
Section 12

Permutations and Combinations
Overview

- Permutations are the number of arrangements of a set of items of a specific size
- Combinations are the number of subsets of a specific size
- The Binomial Theorem is a general representation of binomial coefficients
- Playing cards
 - 4 suits - spades, hearts, diamonds, clubs
 - 13 values - A,K,Q,J,10,9,8,7,6,5,4,3,2
 - 52 total cards (+ jokers)
Permutations

- Battle - Card game where highest value wins (special rules for ties)
- Demonstration (Hearts only)
 - How many ways to arrange 6 cards? (Hint: Product rule.)
 - How many ways to arrange 3 of 6 cards?
 - How many ways to arrange k of 6 cards?
 - How many ways to arrange k of n cards?
Permutation Formulae

- All arrangements: \(n(n - 1)(n - 2) \ldots (1) = n! \)
- Arrangements of size \(r \): \(n(n - 1)(n - 2) \ldots n - (r - 1) \)
 - Last term is also \(n - r + 1 \)
 - \((n - r)! = (n - r)(n - r - 1)(n - r - 2) \ldots (1) \)
 - \(\frac{n!}{(n-r)!} \) yields arrangements of size \(r \)
- Formula: \(P(n, r) = \frac{n!}{(n-r)!} \)
- Note: if \(n == r \) then \(P(n, n) \) or \(P(n) = \frac{n!}{(n-n)!} = \frac{n!}{0!} = n! \)
Combinations

- Oh Heck - Card game with hands and “tricks”
- Demonstration (Hearts only)
 - Order of cards in hand does not matter
 - How many different hands of size 3 can be dealt?
 - Given my hand, how many different hands of size 3 can opponent have?
 - Given my hand, how many different hands of size 3 can opponent have with all cards lower than my highest?
Combination Formulae

- Number of permutations divided by the number that are the same (division rule)

\[P(n, r) / P(r) = \frac{n!}{(n-r)!} \cdot \frac{r!}{r!(n-r)!} = \frac{n!}{r!(n-r)!} \]

- Number of subsets of set S a given size
 - Size 0 is ∅, only one \(\frac{n!}{0!(n-0)!} = 1 \)
 - Size \(n \) is S, only one \(\frac{n!}{n!(n-n)!} = 1 \)
 - Size 1 subsets, each element is \(|S| \), \(\frac{n!}{1!(n-1)!} = n \)
 - Size \(n - 1 \) subsets, S with each element removed, number is \(|S|, \frac{n!}{(n-1)!(n-(n-1))!} = n \)

- Formula: \(C(n, r) \) or \(\binom{n}{r} = \frac{n!}{r!(n-r)!} \)

- Note: \(\binom{n}{n} = \frac{n!}{n!0!} = 1 \) and \(\binom{n}{0} = \frac{n!}{n!0!} = 1 \)
Binomial Theorem

\((x + y)^n = \sum_{k=0}^{n} \binom{n}{k} x^{n-k} y^k = \binom{n}{0} x^n + \binom{n}{1} x^{n-1} y + \binom{n}{2} x^{n-2} y^2 + \ldots + \binom{n}{n-1} x y^{n-1} + \binom{n}{n} y^n \)

- Can find coefficient for any term in binomial expansion
 - Given \((2x + 3y)^4\), what is the coefficient for the \(x^2y^2\) term?
 - \(\binom{4}{2}(2x)^2(3y)^2 = 6 \times 4 \times 9 = 216 \)

- Shows \(\sum_{k=0}^{n} \binom{n}{k} = 2^n \) (from text)

- \(2^n = (1 + 1)^n = \sum_{k=0}^{n} \binom{n}{k} 1^{n-k} 1^k = \sum_{k=0}^{n} \binom{n}{k} \)
Pascal’s Triangle

- Example on board
- Pascal’s Identity: $\binom{n+1}{k} = \binom{n}{k-1} + \binom{n}{k}$
- Algebraic proof:
 - $\binom{n+1}{k} = \frac{(n+1)!}{k!(n+1-k)!}$
 - $\binom{n}{k-1} = \frac{n!}{(k-1)!(n-(k-1))!}$
 - $\frac{k*\binom{n}{k-1}}{k*\binom{n}{k}} = \frac{\binom{n}{k}*(n+1-k)}{k*(n+1-k)!}$
 - $\binom{n}{k-1} + \binom{n}{k} = \frac{k*n!}{k*(n+1-k)!} = \frac{n!(k+n-k+1)}{k!(n+1-k)!} = \frac{(n+1)!}{k!(n+1-k)!}$
Section 13

Probability
Finite Probability

- Let \(S \) be a set of equally likely outcomes – sample space.
- Let \(E \subseteq S \) be a set of desired outcomes – event.
- \(p(E) = \frac{|E|}{|S|} \) – probability of \(E \)

Examples (sample space is deck of cards):
- Probability of drawing a heart \(p(\text{heart}) = \frac{13}{52} = \frac{1}{4} \)
- Probability of drawing a king \(p(\text{king}) = \frac{4}{52} = \frac{1}{13} \)
- Probability of drawing king of hearts \(p(K\text{heart}) = \frac{1}{52} \)
- Probability of drawing two hearts in a row (replacing your card) \(p(2\text{hearts}) = \frac{169}{2704} \)
 - Why? Two draws makes total outcomes is \(52 \times 52 \)
 - 13 successes in each draw means 169 successful outcomes (product rule)
- Probability of drawing 5 hearts in a row (without replacement) \(p(\text{flush}) = \frac{13 \times 12 \times 11 \times 10 \times 9}{52 \times 51 \times 50 \times 49 \times 48} \)
The complement of E is \bar{E} is $S - E$. $p(\bar{E} = 1 - p(E)$

Probability of not drawing a heart $p(\text{heart} = 1 - 1/4 = 3/4$

Sometimes much easier to calculate the complement

The union of two events is $E_1 \cup E_2$.

$p(E_1 \cup E_2) = p(E_1) + p(E_2) - p(E_1 \cap E_2)$

$p(\text{king or heart}) = p(\text{king}) + p(\text{heart}) - p(K\text{heart}) = 1/13 + 1/4 - 1/52 = 16/52$
Probability Theory

- Let S be a sample space
- Each element in S is assigned a probability ($p(s)$).
- $0 \leq p(s) \leq 1$
- $\sum_{s \in S} p(s) = 1$
- Function from S to set of probabilities is called probability distribution function
- If all probabilities are the same, uniform distribution
 $|S| = n, \forall s \in S, p(s) = 1/n$
- $p(E) = \sum_{s \in E} p(s)$
Conditional Probability

- Probability of event E given that event F has happened
 $p(E|F)$

 $p(E|F) = \frac{p(E \cap F)}{p(F)}$

- Example:
 - Given that 4 hearts in a row have been drawn, what is the probability that a 5th heart will be drawn?
 - $p(F) = p(4\text{hearts}) = \frac{13 \times 12 \times 11 \times 10}{52 \times 51 \times 50 \times 49}$
 - In this case, $p(E \cap F) = p(E) = p(\text{flush}) = \frac{13 \times 12 \times 11 \times 10 \times 9}{52 \times 51 \times 50 \times 49 \times 48}$
 - $p(E|F) = \frac{9}{48}$
Independence

- Two events are independent if one happening has no effect on the other happening
- Examples:
 - I draw a 7 from a deck of cards and you draw a 10 from a different deck.
 - I wear a hat and President Livingstone wears a hat.
 - We have an exam in 2350 and Dr. Donahoo gives an exam in 4321.
- E and F are independent iff $p(E) \times p(F) = p(E \cap F)$
- Different decks:
 - $p(7) = 1/13$, $p(10) = 1/13$, $p(7 \land 10) = 1/169 \approx .0060$
- Same decks:
 - $p(7) = 1/13$, $p(10) = 1/13$, $p(7 \land 10) = 1/13 \times 4/51 = 4/663 \approx .0059$
Bernoulli Trials

- Probability of k successes of n independent trials with success p and failure $q = 1 - p$ is $\binom{n}{k} p^k q^{n-k}$

- Examples (replacing cards back in deck)
 - Probability of drawing 4 hearts out of 5 cards
 - $n = 5$, $k = 4$, $p = 0.25$, $q = 0.75$, $p(4H) = \binom{5}{4} \cdot 0.25^4 \cdot 0.75 \approx 0.0146$
 - Probability of drawing at least 4 hearts out of 5 cards
 - $p(4H) + p(5H) = \binom{5}{4} \cdot 0.25^4 \cdot 0.75 + \binom{5}{5} \cdot 0.25^5 \cdot 0.75^0 = 0.015625$
 - Probability of drawing at least 2 hearts out of 5 cards
 - $1 - (p(0H) + p(1H)) = 1 - \binom{5}{0} \cdot 0.25^0 \cdot 0.75^5 + \binom{5}{1} \cdot 0.25^1 \cdot 0.75^4 \approx 0.367$
Random Variable

- Not random and not a variable
- Function from S to \mathbb{R} (assigns real number to each possible outcome)
- Example: (Replacing cards as before)
 - Draw 3 cards from a deck. The set of all possible outcomes is S.
 - Let $X(s)$ be the random variable of the number of times a heart is drawn, where $s \in S$
 - Quick demo
 - $\forall s \in S, 0 \leq X(s) \leq 3$
- Distribution of X on S is the set of pairs $(r, p(X = r))$ where $r \in X(s)$
- From example:
 $(0, 0.421875), (1, 0.421875), (2, 0.140625), (3, 0.015625)$
Section 14

Expected Value and Variance
Expected Value

- Given a random variable X, the *expected value* of X is

 $E(X) = \sum_{s \in \mathcal{S}} p(s)X(s)$

- Recall $X(s) = y$ means y is the number of interesting occurrences in event s

- Examples:
 - Assume cards 2-10 of hearts. Let X be the value of the card. Expected value of drawing a card:

 $\frac{1}{9} \times 2 + \frac{1}{9} \times 3 + \frac{1}{9} \times 4 + \frac{1}{9} \times 5 + \frac{1}{9} \times 6 + \frac{1}{9} \times 7 + \frac{1}{9} \times 8 + \frac{1}{9} \times 9 + \frac{1}{9} \times 10 = 6$

 - Assume J,Q,K have value 10 and A has value 11. Expected value of a card:

 $E(X) = \frac{1}{13} \times (\sum_{k=2}^{9} k + 11) + \frac{4}{13} \times 10 = \frac{95}{13}$

 - Assume 5 cards, consisting of 4 2s and 1 3.

 $E(X) = .8 \times 2 + .2 \times 3 = 2.2$
The expected number of success of n Bernoulli trials with success p is $n \times p$

Proof: (from text)

Let $X(s)$ be the number of successes out of n trials.

\[p(X = k) = \binom{n}{k} p^k q^{n-k} \]

\[E(X) = \sum_{k=1}^{n} k \times \binom{n}{k} p^k q^{n-k} \quad \text{Note: } k = 0 \text{ adds } 0 \text{ to } E(X) \]

\[= \sum_{k=1}^{n} n \binom{n-1}{k-1} p^k q^{n-k} \]

\[= np \times \sum_{k=1}^{n} \binom{n-1}{k-1} p^{k-1} q^{n-k} \]

\[= np \times \sum_{j=0}^{n-1} \binom{n-1}{j} p^j q^{n-1-j} \quad \text{(by shifting index)} \]

\[= np \times (p + q)^n - 1 \quad \text{(by binomial theorem)} \]

\[= np \quad \text{(by } p + q = 1) \]
Linearity

- Expected value of sum of random variables is sum of expected values
 \[E(X_1 + X_2 + \ldots + X_n) = E(X_1) + E(X_2) + \ldots + E(X_n) \]
- \[E(aX + b) = a \cdot E(X) + b \]
- Examples:
 - Sum of two cards (with replacement) is \(14 \frac{8}{13} \)
 - Sum of two die rolls is \(2 \cdot E(X) \) where
 \[E(X) = \frac{1}{6} \cdot \sum_{k=1}^{6} k = \frac{21}{6} = \frac{7}{2} \]
Complex Example - Expected number of inversions in a polynomial

- A permutation P of integers $1 \ldots n$ is an arrangement of the numbers
- An inversion is where $i < j$ but $j \prec i$ in P
- Example: $P = (1, 3, 5, 2, 4)$ the inversions are $(2, 3), (2, 5), (4, 5)$
- Let $I_{i,j}$ be the random variable on the set of all permutations of the first n integers with $I_{i,j} = 1$ if (i, j) is an inversion on the permutation
- For the example, $I_{2,3}(P) = 1, I_{1,4} = 0$
- Let X be the random variable equal to the number of inversions, $X = \Sigma_{1 \leq i < j \leq n} I_{i,j}$
- For example, $X(P) = 3$
- $E(I_{i,j}) = 1 \times p(I_{i,j} = 1) + 0 \times p(I_{i,j} = 0) = 1/2$ (equally likely inversion as not)
- There are $\binom{n}{2}$ ways for 2 numbers to be arranged out of n
- $E(X) = \binom{n}{2} E(I_{i,j}) = \frac{n!}{(n-2)! \times 2^2 \times 2} = \frac{n \times (n-1)}{4}$
Average Case Complexity

- S is the possible inputs to the program
- $X : S \to \mathbb{R}$, such that $\forall s \in S, X(s)$ is the number of operations performed
- Let $p(s)$ be the probability of s being the input to the program
- $\sum_{s \in S} p(s)X(s)$ is the expected (or average) number of operations
Average Complexity Linear Search (text)

- Let p be the probability $x \in A$. Assume x is equally likely to be in any other location.
- Counting number of comparisons
- For each element, check to see if at end of array and compare value (2 comparisons per element)
- After loop, one comparison to see if past end of array
- Probability x is at element k is p/n
- Probability x is not in list is $q = 1 - p$
- If $x \in A$, then $\sum_{k=1}^{n} \frac{p}{n} (2k + 1) =$
- $\frac{p}{n} \sum_{k=1}^{n} (2k + 1) = \frac{p}{n} * (n + 2 \sum_{k=1}^{n} k)$
- $= \frac{p}{n} * (n + 2 * \frac{n(n+1)}{2}) = \frac{p}{n} * (n + n(n+1)) = p * (1 + n + 1) = p(n+2)$
- If $x \not\in A$, then $(2n + 2)q$
- $E(X) = p(n + 2) + (2n + 2)q$
Variance

- Let X be a random variable on S
- Variance on X (denoted $V(X)$) indicates the spread of values in $X(S)$
- $V(X) = \sum_{s \in S} (X(s) - E(X))^2 p(s)$
- Standard deviation $\sigma(X) = \sqrt{V(X)}$
- Example:
 - Blackjack cards: $V(X) = \sum_{s \in S} (X(s) - 7 \frac{4}{13})^2 p(s) =$
 - $(-5 \frac{4}{13})^2 \times 1/13 + (-4 \frac{4}{13})^2 \times 1/13 + \ldots + (2 \frac{9}{13})^2 \times 4/13 + (3 \frac{9}{13})^2 \times 1/13$
 - ≈ 8.5
 - $\sigma(X) \approx 2.9$
Variance Continued

- $V(X) = E(X^2) - E(X)^2$
- Example:
 - Blackjack cards: $E(X)^2 = (\frac{74}{13})^2 \approx 53.4$
 - $E(X^2) = 1/13 \times (\Sigma_{k=2}^{9} k^2 + 121) + 4/13 \times 100 = \frac{784}{13} \approx 61.9$
 - ≈ 8.5
 - $\sigma(X) \approx 2.9$
- Let $E(X) = \mu$. Then $V(X) = E((X - \mu)^2)$
 - $= 1/13 \times (\Sigma_{k=2}^{9} (k-7 \frac{4}{13})^2 + (11-7 \frac{4}{13})^2) + 4/13(10-7 \frac{4}{13})^2 = 8.5$
- Let X be a random variable such that $X(t) = 1$ if a Bernoulli trial is successful and $X(t) = 0$ otherwise.
 - Note: Single trial, so $n = 1$ for Bernoulli distribution.
 - $E(X) = p \times 1 + q \times 0 = p$. $E(X^2) = p \times 1^2 + q \times 0^2 = p$.
 - $E(X)^2 = p^2$. $V(X) = p - p^2 = p(1 - p) = pq$.
Variance Equations

- Bienayme’s Formula
 - If X and Y are independent random variables on S, then $V(X + Y) = V(X) + V(Y)$

- Chebyshev’s Inequality
 - If X is a random variable on S with probability function p, then $p(|X(s) - E(X)| \geq r) \leq V(X)/(r^2)$

- Example:
 - Probability draw a card 3 or more from the mean of blackjack cards
 - $V(X)/r^2 \approx 8.5/9 \approx 0.94$
 - Actual is 2, 3, 4, $A = 4/13$
Section 15

Recurrence Relations
A *recurrence relation* is an equation that expresses \(a_n \) in terms of one of more of the previous terms.

A sequence is a *solution* to a recurrence relation if its terms satisfy the equations.

Examples:

- **Recurrence Relation:** \(a_n = a_{n-1} + 3, \ a_0 = 2 \).

 Solution: \([2, 5, 8, \ldots]\)

- **Fibonacci:** \(a_n = a_{n-1} + a_{n-2}, \ a_0 = 1, \ a_1 = 1 \).

 Solution: \([0, 1, 1, 2, 3, 5, \ldots]\)

- A *closed form solution* is an equation for each term that does not reference other terms.
Linear Homogeneous Recurrence Relation

Definition

- A *linear homogeneous recurrence relation of degree k with constant coefficients* is a recurrence relation of the form: \(a_n = c_1a_{n-1} + c_2a_{n-2} + \ldots + c_k a_{n-k} \) such that every \(c_i \in \mathbb{R} \) and \(c_k \neq 0 \).
- Linear because each right-hand side term is sum of previous terms
- Homogeneous because no terms occur that are not multiples of previous terms
- Constant coefficients means no \(c_i \) can reference \(n \) (but note that 0 is allowed for all but last coefficient)
- The degree is determined by the number of terms required
Linear Homogeneous Recurrence Relation

▶ Examples

▶ $a_n = \frac{3a_{n-1}}{2}$ is l.h.r.r. of degree 1
▶ Fibonacci is l.h.r.r of degree 2
▶ $a_n = 2 \times a_{n-5}$ is l.h.r.r of degree 5 (4 terms with 0 as coefficient)
▶ $a_n = a_{n-1} + 3$ is not l.h.r.r because 3 is not multiple of previous term
▶ $a_n = 2^n a_{n-1}$ is not l.h.r.r because 2^n is not constant coefficient
▶ $a_n = a_{n-1}^2$ is not l.h.r.r because squared term is not linear
Solving L.H.R.R. of degree 2

- Find closed form equation (of the form $a_n = r^n$).
- $r^n = c_1 r^{n-1} + c_2 r^{n-2} + \ldots + c_k r^{n-k}$
- $r^k = c_1 r^{k-1} + c_2 r^{k-2} + \ldots + c_k$ – divide both sides by r^{n-k}
- $r^k - c_1 r^{k-1} - c_2 r^{k-2} - \ldots - c_k = 0$ – is the characteristic equation
- Solutions to the characteristic equation are the characteristic roots
- Assuming degree=2 and distinct roots r_0 and r_1, $a_n = \alpha_1 r_0^n + \alpha_2 r_1^n$
- Use initial terms to solve for α_1 and α_2
Solving L.H.R.R.

- \(a_n = 5a_{n-1} - 6a_{n-2}, a_0 = 1, a_1 = 0 \)
- \(r^n = 5r^{n-1} - 6r^{n-2} \rightarrow r^2 = 5r - 6 \rightarrow r^2 - 5r + 6 = 0 \)
- Characteristic Roots are 3, 2
- \(a_n = \alpha_1 3^n + \alpha_2 2^n \)
- \(1 = \alpha_1 + \alpha_2 \rightarrow 1 - \alpha_1 = \alpha_2 \)
- \(0 = \alpha_1 * 3 + \alpha_2 * 2 \rightarrow 0 = \alpha_1 * 3 + (1 - \alpha_1) * 2 \rightarrow \alpha_1 = -2 \rightarrow \alpha_2 = 3. \)
- \(a_n = -2(3^n) + 3(2^n) \)
- Check: Sequence solution is [1, 0, -6, -30, ...]
- \(a_3 = -2(3^3) + 3(2^3) = -54 + 24 = -30 \)
Solving L.H.R.R.

- Fibonacci: \(a_n = a_{n-1} + a_{n-2}, a_0 = 0, a_1 = 1 \)
- \(r^2 = 1r^1 + 1r^0 \)
- \(r^2 - r^1 - 1 = 0 \)
- Quadratic Equation: \(\frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \)
- \(a = 1, b = -1, c = -1, \frac{1+\sqrt{1+4}}{2}, \frac{1-\sqrt{1+4}}{2} \)
- \(a_n = \alpha_1 \left(\frac{1+\sqrt{5}}{2} \right)^n + \alpha_2 \left(\frac{1-\sqrt{5}}{2} \right)^n \)
- Use \(a_0 \) and \(a_1 \) to determine values for alpha
Solving L.H.R.R. continued

\[0 = \alpha_1 \left(\frac{1+\sqrt{5}}{2}\right)^0 + \alpha_2 \left(\frac{1-\sqrt{5}}{2}\right)^0 = \alpha_1 + \alpha_2\]

Therefore, \(-\alpha_1 = \alpha_2\)

\[1 = \alpha_1 \left(\frac{1+\sqrt{5}}{2}\right)^1 + \alpha_2 \left(\frac{1-\sqrt{5}}{2}\right)^1\]

Substituting: \(1 = \alpha_1 \left(\frac{1+\sqrt{5}}{2}\right)^1 - \alpha_1 \left(\frac{1-\sqrt{5}}{2}\right)\)

\[1 = \alpha_1 \left(\frac{1+\sqrt{5}}{2} - \frac{1-\sqrt{5}}{2}\right) = \alpha_1 \frac{1+\sqrt{5}-1+\sqrt{5}}{2} = \alpha_1 \sqrt{5}\]

\[\alpha_1 = \frac{1}{\sqrt{5}}, \alpha_2 = \frac{-1}{\sqrt{5}}\]

\[a_n = \frac{1}{\sqrt{5}} \left(\frac{1+\sqrt{5}}{2}\right)^n + \frac{-1}{\sqrt{5}} \left(\frac{1-\sqrt{5}}{2}\right)^n\]

Test cases:

- \(\text{fib}(0) = 0.\) \(\frac{1}{\sqrt{5}} \left(\frac{1+\sqrt{5}}{2}\right)^0 + \frac{-1}{\sqrt{5}} \left(\frac{1-\sqrt{5}}{2}\right)^0 = \frac{1}{\sqrt{5}} - \frac{1}{\sqrt{5}} = 0\)

- \(\text{fib}(5) = 5.\) \(\frac{1}{\sqrt{5}} \left(\frac{1+\sqrt{5}}{2}\right)^5 + \frac{-1}{\sqrt{5}} \left(\frac{1-\sqrt{5}}{2}\right)^5 \approx 4.96 - 0.04 = 5\)

- \(\text{fib}(18) = 2584.\) \(\frac{1}{\sqrt{5}} \left(\frac{1+\sqrt{5}}{2}\right)^{18} + \frac{-1}{\sqrt{5}} \left(\frac{1-\sqrt{5}}{2}\right)^{18} \approx 2584.00007 - (7 \times 10^{-5} = 2584)\)
Let $r^2 - c_1 r^1 - c_2 r^0$ have only one real root x.

Closed form solution for $a_n = \alpha_1 x^n + \alpha_2 n * x^n$

Example: $a_n = 4a_{n-1} - 4a_{n-2}$, $a_0 = 6$, $a_1 = 8$

$r^2 = 4r - 4 \rightarrow r^2 - 4r + 4 = 0$

$\frac{4 \pm \sqrt{16-4*1*4}}{2} = \frac{4}{2} = 2$

$a_n = \alpha_1 2^n + \alpha_2 n * 2^n$

$a_0 = \alpha_1 2^0 + \alpha_2 0 * 2^0 \rightarrow 6 = \alpha_1$

$a_1 = \alpha_1 2^1 + \alpha_2 1 * 2^1 \rightarrow 8 = 6 * 2 + \alpha_2 * 2 \rightarrow -2 = \alpha_2$

$a_n = 6(2^n) - 2n(2^n)$

Check: [6, 8, 8, 0, -32, ...]

$a_4 = 6 * 16 - 8 * 16 = 96 - 128 = -32$
Section 16

Relations
Definitions of Relations

- A *relation* between sets A and B is a subset of $A \times B$
- Typically, a relation defines a connection between elements of the set
- Example 1: $A = \{ \text{students in class} \}$, $B = \{ \text{side of room} \}$, $R(a, b) \leftrightarrow a \text{ sits on } b \text{ side of the room.}$ (on board)
- Example 2: $A = \{ \text{volunteers} \}$, $B = \{ \text{food} \}$, $R(a, b) \rightarrow a \text{ likes } b.$ (on board)
- Functions are relations restricted such that elements from A appear only once (Example 1)
- Graphs can show relations
- Relations can be on one set $A = \{ \text{food} \}$, $B = \{ \text{food} \}$, $R(a, b) \leftrightarrow a \text{ is the same color as } b$ (on board). Usually written as $R(a, a)$
Properties of Relations

- Consider relations on $\mathbb{Z} \times \mathbb{Z}$

 - **Reflexive**: $\forall a \in A, R(a, a)$
 - $R(z_0, z_1) \iff z_0 \leq z_1$ is reflexive
 - $R(z_0, z_1) \iff z_0 < z_1$ is NOT reflexive

 - **Symmetric**: $\forall a \in A, \forall b \in B, R(a, b) \rightarrow R(b, a)$
 - $R(z_0, z_1) \iff z_0 \leq z_1$ is NOT symmetric
 - $R(z_0, z_1) \iff z_0 = z_1$ is symmetric (and reflexive)
 - $R(z_0, z_1) \iff z_0$ and z_1 are relatively prime is symmetric (and not reflexive)

 - **Antisymmetric** (poorly named):
 $\forall a \in A, \forall b \in B, R(a, b) \land R(b, a) \rightarrow a = b$
 - $R(z_0, z_1) \iff z_0 \leq z_1$ is antisymmetric
 - $R(z_0, z_1) \iff z_0 = z_1$ is antisymmetric
 - $R(z_0, z_1) \iff z_0$ and z_1 are relatively prime is NOT antisymmetric
Properties of Relations

- **Transitive**: \(R(a, b) \wedge R(b, c) \rightarrow R(a, c) \)
 - \(R(z_0, z_1) \leftrightarrow z_0 \leq z_1 \) is transitive
 - \(R(z_0, z_1) \leftrightarrow z_0 = z_1 \) is transitive
 - \(R(z_0, z_1) \leftrightarrow z_0 \) and \(z_1 \) are relatively prime is **NOT** transitive
Sets and Relations

- Relations are sets of ordered pairs. Therefore, all set operations apply.
- $R(z_0, z_1) \leftrightarrow z_0 \leq z_1 - R(z_0, z_1) \leftrightarrow z_0 < z_1 = R(z_0, z_1) \leftrightarrow z_0 = z_1$

- Proof:
 - Let $LEQ = R(z_0, z_1) \leftrightarrow z_0 \leq z_1$, $LT = R(z_0, z_1) \leftrightarrow z_0 < z_1$ and $EQ = R(z_0, z_1) \leftrightarrow z_0 = z_1$.
 - Let $(a, b) \in LEQ - LT$. Therefore, $(a, b) \in LEQ$ and $(a, b) \notin LT$
 - Therefore, $a \leq b$ and $a \geq b$ (not less than).
 - Therefore, $a = b$ and $EQ(a, b)$. Reverse direction is similar.

- Let $A = \{1, 2, 3\}$. Let $R(a, a) = \{(1, 1), (2, 2), (1, 2)\}$ and $S(a, a) = \{(1, 1), (2, 2), (2, 1)\}$.
 - $R \cup S = \{(1, 1), (2, 2), (1, 2), (2, 1)\}$
 - $R \cap S = \{(1, 1), (2, 2)\}$
 - $R \oplus S = \{(1, 2), (2, 1)\}$
N-ary Relations

- Text is awkward with notation
- Extend notion to n-wise cross product.
- Given sets $S_0, S_1, \ldots S_{n-1}$, $R \subseteq S_0 \times S_1 \times \ldots \times S_{n-1}$
- $r \in R$ is a n-tuple. Note that the ordering is important.
- Relational databases (Oracle, MySQL, SQLServer, etc.) use tables as relations with attributes representing sets
- Example: Students(Id, Name, Major, Favorite Number)
- Collection of attributes is the schema
- Note: Databases allow duplicate elements – database tables are bags of n-tuples
- Id is primary key uniquely identifies row in table
Basic Relational Algebra

- Let $R(A, B, C) = \{(1, 2, 3), (2, 3, 4)\}$ and $S(C, D, E) = \{(3, 4, 5), (3, 2, 1)\}$
- $\sigma_P R$ (selection) creates new table with same schema as R. A row is in $\sigma_P R$ if it is in R and it satisfies predicate P
- $\sigma_{A=1} R = \{(1, 2, 3)\}$
- $\Pi_{A,B} R$ (projection) creates new table with columns A and B. There is a 1-1 mapping from each row in R to each row in $\Pi_{A,B} R$
- $\Pi_{B,C} R = \{(2, 3), (3, 4)\}$
- $R \bowtie S$ (natural join) creates new table with union of columns in R and in S. A row is in $R \bowtie S$ if $\exists r \in R \land s \in S$ such that $r[R \cap S] = s[R \cap S]$.
- $R \bowtie S = \{(1, 2, 3, 4, 5), (1, 2, 3, 2, 1)\}$
- Note: Results of relational algebra operators are relations. Operations can be composed.
- $\Pi_{A,E}(\sigma_{B=D}(R \bowtie S) = \{(1, 1)\}$
Queries

- Example queries using relational algebra
- To be added Spring 2019
Section 17

Relations, Matrices and Digraphs
Matrices and Relations

- Matrix representation of $R(a, a)$ (can be any relation – see text)
- $M_R[i, j] = 1 \iff R(i, J)$. Otherwise, $M_R[i, j] = 0$.
- Matrix M_R is the representation of $R = \{(1, 1), (1, 2), (2, 1), (3, 3)\}$
- Matrix M_S is the representation of $S = \{(2, 2), (2, 3), (3, 2), (3, 3)\}$
- Matrix diagonal all 1's implies relation is reflexive
- $M = M^t$ implies relation is symmetric

\[
M_R = \begin{bmatrix} 1 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}, \quad M_S = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 1 & 1 \end{bmatrix}
\]
Matrix Operations and Relational Operations

- $A \lor B$ is the join of matrices A and B – logical OR of corresponding elements
- $A \land B$ is the meet of matrices A and B – logical AND of corresponding elements
- $A \odot B$ is the Boolean product of matrices A and B –
 \[C = A \odot B \rightarrow c_{ij} = (a_{i1} \land b_{1j}) \lor (a_{i2} \land b_{2j}) \lor \ldots \lor (a_{in} \land b_{nj}) \]
 – see below (note similarity to matrix multiplication)
- $M_R \lor M_S = R \cup S$
- $M_S \land M_S = R \cap S$
- Boolean product is composition of relations
- $M_R \odot M_R = M_R \rightarrow R$ is transitive

\[
\begin{bmatrix}
1 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 1
\end{bmatrix}
\odot
\begin{bmatrix}
0 & 0 & 0 \\
0 & 1 & 1 \\
0 & 1 & 1
\end{bmatrix}
=
\begin{bmatrix}
0 & 1 & 1 \\
0 & 0 & 0 \\
0 & 1 & 1
\end{bmatrix}
\]
Let R be a relation on set A

$G_R = (A, E)$ where $E \subseteq A \times A$ such that $(a_i, a_j) \in E \leftrightarrow R(a_i, a_j)$

Example on board for $R = \{(1, 1), (1, 2), (2, 3), (3, 1)\}$

Boolean product of $M_R \odot M_R$ contains edges two steps away

\[
\begin{bmatrix}
1 & 1 & 0 \\
0 & 0 & 1 \\
1 & 0 & 0
\end{bmatrix} \odot \begin{bmatrix}
1 & 1 & 0 \\
0 & 0 & 1 \\
1 & 0 & 0
\end{bmatrix} = \begin{bmatrix}
1 & 1 & 1 \\
1 & 0 & 0 \\
1 & 1 & 0
\end{bmatrix}
\]
Paths and Boolean Products

- $M^n_R[i,j] = 1$ (Boolean product of M_R with itself n times) iff G_R contains a path of length n from a_i to a_j

- Proof (by induction):
 - WLOG, let $|A| = p$
 - Basis: By definition, G_R contains an edge from a_i to a_j exactly when $M_R[i,j] = 1$
 - Inductive Hypothesis: If $M^k_R[i,j] = 1$, there exists a path of length k from a_i to a_j in G_R.
 - Consider $M^{k+1}_R = M^k_R \odot M_R$. $M^{k+1}_R[i,j] = 1$ iff $\exists m, 1 \leq m \leq p$ such that $M^k_R[i,m] = 1$ and $M_R[m,j] = 1$.
 - By the IH, $M^k_R[i,m] = 1$ means there is a path of length k from a_i to a_m. Call this path P.
 - $M_R[m,j] = 1$ means there is an edge from a_m to a_j.
 - The path P' which follows P for k steps, then takes the edge from a_m to a_j is a path from a_i to a_j and is of length $k + 1$

- The completion of the proof (showing if there is a path of length k in G_R then $M^k_R[i,j] = 1$) is in the homework.
Let $|A| = n$.

$\circ_{k=1}^{n} M_{R}^{k}$ is the transitive closure of R

Also called the connectivity relation R^*.

Given a graph $G = (A, E)$, we can define $R(a_i, a_j) \leftrightarrow (a_i, a_j) \in E$ (e.g., derive relation from graph).

Note: If there is a path from a_i to a_j in G, then the shortest path cannot be longer than $|A|$.

$\circ_{k=1}^{n} M_{R^*}^{k}$ is the set of all paths in G
An equivalence relation is a relation that is reflexive, symmetric and transitive.

If $R(A, A)$ is an equivalence relation, then $R(a_i, a_j)$ means $a_i \sim a_j$ (a_i and a_j are equivalent).

Let $R(A, A)$ be an equivalence relation. The equivalence class of $a_i \in A$, $[a]_R = \{a_j \mid R(a_i, a_j)\}$.

Note: $a_i \in [a_i]_R$, since R is reflexive.

Note: $\bigcup_{a \in A} [a]_R = A$

Note: $a_j \notin [a_i]_R \rightarrow [a_j]_R \cap [a_i]_R = \emptyset$

Note: $a_j \in [a_i]_R \rightarrow [a_j]_R = [a_i]_R$

The equivalence classes of R form a partition of A.
Partial Orders

- $R(A, A)$ is a *partial order* on A iff it is reflexive, antisymmetric and transitive.
- (A, R) is a *partially ordered set* or a *poset*.
- Consider $R = \{(1, 1), (2, 2), (3, 3), (4, 4), (1, 2), (1, 3), (2, 4)\}$ (M_R is below).
- Arbitrary relation symbol is \preceq, so (A, \preceq) is a poset with arbitrary relation.

\[
M_R = \begin{bmatrix}
1 & 1 & 0 & 1 \\
0 & 1 & 0 & 1 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{bmatrix}
\]
Poset Properties

- Not all elements are related – 2 and 3 from previous
- if \(a \preceq b \) holds a and b are *comparable*.
- if all elements in A are comparable, \((S, \preceq)\) is a *total ordering*.
- \(\forall a_i \in A, a_j \not\preceq a_i \rightarrow a_j \) is a *maximal* element (3 and 4 are maximal in example)
- \(\forall a_i \in A, a_i \not\preceq a_j \rightarrow a_j \) is a *minimal* element (1 is minimal in example)
- every poset has at least one minimal and one maximal element (can have more)
Section 18

Graphs
Terminology

- A graph $G = (V, E)$ where V is a set of vertices (or nodes) and $E \subseteq V \times V$ is a set of edges.
- A graph can be *directed*
 - first vertex in an edge is the *source*
 - second vertex is the *destination*
 - connectivity is from source to destination
 - edges represented as arrows pointing at the destination
 - example on board
- A graph can be *undirected*
 - both vertices are incident on edge
 - connectivity is bidirectional
 - edges represented as lines between vertices
 - example on board
- A graph is *simple* if E is a set and there are no self-loops.
Neighborhoods

- Vertex \(v_i \) is adjacent to \(v \) if there is an edge from \(v \) to \(v_i \)
- Vertex \(v_i \) is a **neighbor** of \(v \) if it is adjacent to \(v \)
- Set of neighbors of \(v \) are the **neighborhood** of \(v \), denoted \(N(v) \)
- Directed graph definition: \(N(v) = \{ v_i \in V | (v, v_i) \in E \} \)
- Undirected graph definition: \(N(v) = \{ v_i \in V | (v, v_i) \in E \lor (v_i, v) \in E \} \)
- Neighborhood can apply to \(A \subset V \). \(N(A) = \bigcup_{v \in A} N(v) \).
- Example on board
Degree of a node

- The degree \(\deg(v) \) of a node in an undirected graph is the number of times an edge connects to the node.

\[
\deg(v) = |\{(v, v_i) | (v, v_i) \in E\}| + |\{(v_i, v) | (v_i, v) \in E\}|
\]

- Example on board

- **Handshake Theorem**: Let \(G = (V, E) \) be an undirected graph. \(2|E| = \sum_{v \in V} \deg(v) \).

- Proof by induction
 - Basis: Let \(E = \emptyset \). Therefore, \(\forall v \in V, \deg(v) = 0 \), so \(\sum_{v \in V} \deg(v) = 0 = 2 * |E| \)
 - Inductive Hypothesis: Let \(G = (V, E) \) be a graph with \(k \) edges. Therefore, \(2|E| = \sum_{v \in V} \deg(v) \).
 - Let \(G' = (V', E') \) such that \(V' = V \) and \(E' = E \cup (v_i, v_j) \).
 - Case 1: \((v_i, v_j) \in E \). Therefore, \(E = E' \) and by the inductive hypothesis, the theorem holds.
 - Case 2: \((v_i, v_j) \notin E \). Therefore, \(|E'| = |E| + 1 \).
 - Note that, \(\deg(v_i) \) and \(\deg(v_j) \) both increase by one. Therefore, \(\sum_{v \in V} \deg(v) = \sum_{v \in V} \deg(v) + 2 \).
 - Therefore, \(2|E'| = 2|E| + 2 = \sum_{v \in V} \deg(v) + 2 = \sum_{v \in V} \deg(v) \)
Indegree and outdegree

- The **indegree** ($\text{deg}^-(v)$) of a node v in a directed graph is the number of edges with v as the destination.
- The **outdegree** ($\text{deg}^+(v)$) of a node v in a directed graph is the number of edges with v as the source.
- Example on board
- $\sum_{v \in V} \text{deg}^-(v) = \sum_{v \in V} \text{deg}^+(v) = |E|$
Special Graphs

- Let $G = (V, E)$ be a simple graph. G is a **complete graph** iff $\forall v_i, v_j \in V, v_j \in N(v_i)$.
- Example on board.
- Let $G = (V_1 \cup V_2, E)$ be a simple graph. G is a **bipartite graph** iff $\forall (v_i, v_j) \in E, v_i \in V_1 \rightarrow v_j \in V_2 \land v_i \in V_2 \rightarrow v_j \in V_1$
- Example on board.
- Let $G = (V_1 \cup V_2, E)$ be a simple graph. G is a **complete bipartite graph** iff it is bipartite and every node in V_1 is connected to every node in V_2.
Matchings

- A **matching** of a bipartite graph $G = (V_1 \cup V_2, E)$ is a subgraph $G' = (V_1 \cup V_2, E' \subseteq E)$ such that $\forall v \in V_1 \cup V_2, \deg(v) \leq 1$.

- A **maximum matching** is a matching with the largest number of edges.

- A **complete matching** is a matching from V_1 to V_2 such that all nodes in V_1 are incident on an edge ($|E'| = |V_1|$)

- **Hall’s Marriage Theorem**: A bipartite graph $G = (V_1 \cup V_2, E)$ has a complete matching iff $\forall A \in 2^{V_1}, |N(A)| \geq |A|$.
Section 19

Graphs, Paths and Circuits
Graph Isomorphism

- $G_1 = (V_1, E_1)$ is isomorphic to $G_2 = (V_2, E_2)$ iff there exists a bijective function $f : V_1 \rightarrow V_2$ such that $v_i \in N(v_j)$ in G_1 iff $f(v_i) \in N(f(v_j))$ in G_2.
- Example on board (isomorphic and not isomorphic)
- Properties which must hold under isomorphism
 - Number of vertices
 - Number of edges
 - Number of vertices with same degree
- M_G is adjacency matrix of G
- Rearrange rows and columns of M_{G_1} until $M_{G_1} = M_{G_2}$, then G_1 is isomorphic to G_2
- Example on board
Paths

- A **path** in a simple graph G is a sequence $P = [x_0, x_1, \ldots, x_{n-1}]$ of vertices such that $x_{i+1} \in N(x_i)$.
- A **circuit** is a path such that $x_0 = x_{n-1}$
- The length of P is $n - 1$.
- Example on board (undirected and directed)
- A graph is **connected** if there is a path (in both directions) between every pair of distinct vertices
- A **connected component** of G is a subgraph G' such that G' is connected and there does not exists a connected subgraph G'' of G such that G' is a proper subgraph of G''.
- An **articulation point** is a vertex $v \in V$ such that the removal of v would make G no longer connected
- A **bridge** is an edge $(v_i, v_j) \in E$ such that the removal of (v_i, v_j) would make G no longer connected
- Example on board
- Paths are preserved under isomorphism. Therefore, if G_1 has a circuit of length k and G_2 does not, then G_1 and G_2 are not isomorphic.
Euler Circuits and Paths

- A multigraph G contains multiple edges from two vertices (i.e., E is not a set)
- A Euler circuit in G is a simple circuit containing every edge in G
- A Euler path in G is a simple path containing every edge in G
- Example on board
- Conditions for Euler circuits:
 - G must be connected
 - Every vertex must have even degree
- Conditions for Euler path, but NOT Euler circuit
 - G must be connected
 - Exactly two vertices with odd degree
- Excellent proofs in text
A Hamilton circuit in G is a simple circuit containing every vertex in G

A Hamilton path in G is a simple path containing every vertex in G

Example on board

No known simple criteria for Hamilton circuits or paths (necessary and sufficient)

Sufficient criteria for circuit in simple, undirected graph $G = (V, E)$

- G is connected
- $|V| \geq 3 \land \forall v \in V, \deg(v) \geq n/2$ (Dirac’s Theorem)
- $|V| \geq 3 \land \forall u, v \in V, u \notin N(v) \rightarrow \deg(u) + \deg(v) \geq n$ (Ore’s Theorem)
Section 20

Shortest Path and Trees
Shortest Path

- A weighted graph $G^+(V, E)$ where E is a set of 3-tuples (v_i, v_j, w) such that w is the weight of the edge (v_i, v_j)
- Can be directed or undirected
- The matrix representation of G^+ uses weights as values (assuming simple graph with all weights positive)
- Example on board using matrix below
- The shortest path has the least sum of weights
- Example on board from 0 to 4

\[
M = \begin{bmatrix}
0 & 10 & 0 & 20 & 0 \\
12 & 12 & 12 & 12 & 12 \\
0 & 0 & 0 & 0 & 0 \\
20 & 12 & 0 & 0 & 10 \\
0 & 12 & 5 & 10 & 0
\end{bmatrix}
\]
Dijkstra’s Algorithm

- Inputs: $G^+, v_i, v_j \in V$
- Output: Shortest path from v_i to v_j in G^+
- Keep list of shortest known paths from v_i to all $v \in V$
- Initialize list so that all nodes have unknown path (P) with infinite length (L)
- Set $P(v_i)$ to $[v_i]$ and $L(v_i) = 0$
- While v_j is unmarked
 - Let v be the vertex with the shortest path so far (choose randomly for ties)
 - Mark v
 - For all unmarked $v_k \in N(v)$
 - Let w be from the edge (v, v_k, w)
 - If $L(v) + w < L(v_k)$, then set $P(v_k) = P(v).v$ and $L(v_k) = L(v) + w$

- Example on board
A directed acyclic graph (DAG) is a directed graph $G = (V, E)$ such that in the transitive closure of G $G^*_R = (V, E^*), \forall v \in V, v \notin N(v)$

Example on board
$G = (\{0, 1, 2, 3\}, \{(0, 1), (1, 2), (0, 2), (3, 0)\})$

The relation corresponding to a DAG G is not reflexive but it is antisymmetric. It may or may not be transitive.
Trees

- A *tree* is an undirected graph with no simple cycles.
- A *rooted tree* is a DAG such that:
 - The undirected form of the graph is a tree
 - A root is a node with no incoming edges
 - All edges are directed away from the root
- Any edge in tree can be selected as root (different roots yield different trees)
- A *leaf* is a node with no outgoing edges
- The *branching factor* of a tree is the maximum number of children for each node
- If m is the branching factor, than the tree is *m-ary*. If $m = 2$, the tree is binary
Tree Properties

- A tree with \(n \) vertices has \(n - 1 \) edges.
- Inductive Proof (from text):
 - Basis: \(n=1 \). One node. No edges.
 - Inductive Hypothesis: Every tree with \(k \) vertices has \(k - 1 \) edges.
 - Let \(T \) be a tree with \(k + 1 \) nodes. Let \(v \) be a leaf in \(T \).
 - Removing \(v \) from \(T \) generates a tree \(T' \) with \(k \) nodes (\(T' \) has no simple circuits).
 - Therefore, \(T' \) has \(k - 1 \) edges.
 - There can be only one edge from any node in \(T' \) to \(v \), otherwise a cycle would exist (can you prove why?)

- The level of a node is the length of the path from the root to the node.
- The height of a tree is the maximum level of any node.
- A tree of height \(h \) is balanced if all leaves are at level \(h \) or \(h - 1 \).
- There are at most \(m^h \) leaves in an m-ary tree of height \(h \).
Section 21

Tree Traversals and Heaps
Alternative Representation for Sparse Graph

- Consider complete binary tree of height \(k \)
- \(2^k \) nodes. Matrix is \(2^k \times 2^k \) with \(2^{2k} \) entries
- Each non-leaf node has 2 neighbors. All leaves have zero neighbors.
- Matrix has \(2^k \) non-zero values and \(2^k(2^k - 1) \) zeros.
- Examples:
 - \(k = 3 \). Matrix has 64 entries. Eight are one. 56 are zero.
 - \(k = 10 \) Matrix has 1,048,576 entries. 1,047,552 are zero.
- Adjacency List
 - Array of values for each node (size \(2^k \)).
 - Root is index location 0
 - Parallel array with list of neighbors – “in order” if applicable
 - Weights become parallel array with list of (neighbor, weight) pair
- Node Object
 - Value with node references (pointers) (size \(2^k \))
 - References stored “in order” (if applicable)
 - Root reference stored in special location
 - Weights stored with references
Tree Traversals

- Recursive procedure for processing nodes
- Preorder traversal
 - Visit node first
 - Visit children in order
 - Return
- Inorder traversal (more common in binary trees)
 - Visit first child
 - Visit node
 - Visit remaining children in order
 - Return
- Postorder traversal
 - Visit children in order
 - Visit node
 - Return
Depth First Search

- Values can be complex.
- Example: Game of tic-tac-toe (below)
- Spanning tree of graph (tree containing all nodes of graph)
- Algorithm
 - Visit children in order
 - Visit node
 - Return
- Example on board

<table>
<thead>
<tr>
<th></th>
<th>O</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>O</td>
</tr>
<tr>
<td></td>
<td>X</td>
</tr>
</tbody>
</table>
Breadth First Search

- Same applications
- Algorithm
 - Place root in queue
 - While queue not empty
 - Pop node N from queue
 - Visit N
 - Append children of N to queue
- Example on board

```
  O
  X O X
  X
```
Heap

- Tree structure (often binary)
- Parent always greater than or equal to children (max heap)
- Insertion:
 - Add new value to first available leaf
 - if child greater than parent, swap (continue until swap root)
- Example: 10,5,15,8,12,20,2
- Pop: (remove top element)
 - Move greater child into empty slot
 - continue until leaf moved
- Different insertion order can yield different heaps
- Example: 2,5,8,10,12,15,20